Journal article Open Access

Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped

Mekhrdod Subhoni; Kholmirzo Kholmurodov; Aleksandr Doroshkevich

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Mekhrdod Subhoni</dc:creator>
  <dc:creator>Kholmirzo Kholmurodov</dc:creator>
  <dc:creator>Aleksandr Doroshkevich</dc:creator>
  <dc:description>Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchangecorrelation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.</dc:description>
  <dc:title>Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped</dc:title>
All versions This version
Views 1616
Downloads 1717
Data volume 28.2 MB28.2 MB
Unique views 1515
Unique downloads 1616


Cite as