Journal article Open Access
Gilder Cieza-Altamirano; Manuel J. Sánchez-Chero; María del Socorro García-Gonzáles; Rafaél Artidoro Sandoval-Núñez
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3692599</identifier> <creators> <creator> <creatorName>Gilder Cieza-Altamirano</creatorName> </creator> <creator> <creatorName>Manuel J. Sánchez-Chero</creatorName> </creator> <creator> <creatorName>María del Socorro García-Gonzáles</creatorName> </creator> <creator> <creatorName>Rafaél Artidoro Sandoval-Núñez</creatorName> </creator> </creators> <titles> <title>NUMERICAL REPRESENTATIONS FOR SOLVING A CLASS OF THE SYSTEM OF SECOND ORDER TWO-POINT NONLINEAR BOUNDARY VALUE PROBLEMS</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-02-29</date> </dates> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3692599</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3692598</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The aim of the present research is to solve a nonlinear system of second order two-point boundary value problem by using a rapid Adams technique as well as well&ndash;known explicit Runge-Kutta numerical scheme. The designed methodology of both the numerical schemes is also presented. Fourdifferent examples of the system of nonlinear two-point boundary value problems have been discussed and the numerical results obtained from the above mentioned two techniques have been compared with the exact solutions that depict the correctness of the model as well as the numerical schemes. The achieved result details of the system of two-point boundary value problems is presented in the form of tables as well as numerical configurations.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 169 | 169 |
Downloads | 88 | 88 |
Data volume | 58.1 MB | 58.1 MB |
Unique views | 140 | 140 |
Unique downloads | 86 | 86 |