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Highlights
Plants produce a huge array of metabo-
lites in spatiotemporal- and/or environ-
ment-dependent manner, which not
only make it a challenge to understand
plant metabolic diversity but also render
plants idealmodels for identifyingmetabo-
lites and dissecting metabolic pathways.

Inadditiontoreversegeneticapproaches,
forwardgenetic-basedapproachescom-
bining genome sequences with popula-
tion genetics provide clues for
understanding biological mechanisms.

Genomic evolution provides the
genetic basis for metabolic diversity,
including gene duplication, gene loss,
transposon insertion, and the evolution
of substrate preference. Selective
events during crop domestication
and improvement have also played a
vital role in the evolution of metabolism.

Analysis of the metabolome in geneti-
cally diverse populations can also facil-
itate the dissection of phenotypic
traits, and will eventually lead to meta-
bolite-assisted breeding of crops.
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Plants produce a huge array of metabolites, far more than those produced by
most other organisms. Unraveling this diversity and its underlying genetic
variation has attracted increasing research attention. Post-genomic profiling
platforms have enabled the marriage and mining of the enormous amount of
phenotypic and genetic diversity. We review here achievements to date and
challenges remaining that are associated with plant metabolic research using
multi-omic strategies. We focus mainly on strategies adopted in investigating
the diversity of plant metabolism and its underlying features. Recent advances
in linking metabotypes with phenotypic and genotypic traits are also discussed.
Taken together, we conclude that exploring the diversity of metabolism could
provide new insights into plant evolution and domestication.

Simple Beginning: The Significance of Plant Metabolism
Sessile in nature, plants collectively produce a vast array of metabolites (see Glossary) with
estimates ranging from 100 000 to 1 million, and many of these compounds are thought to play
essential roles in resistance and tolerance to biotic and abiotic stresses, respectively [1–4]. Any
single plant species only produces a subset of these metabolites, and current estimates range
from 5000 to tens of thousands [5]. In addition, recent research has revealed that the extents of
qualitative and quantitative variation of metabolism within a species are much larger than had
previously been assumed [6]. Plant metabolites play vital roles in growth, cellular replenishment,
and whole-plant resource allocation, as well as in adaptation of plants to a constantly changing
environment [7,8]. Hence, the metabolome is consequently often regarded as the ‘readout’ of
the physiological status and the bridge between the genotype and the phenotype of a plant [9–
11]. In addition, natural products synthesized in plants provide indispensable resources for
human health and survival. In excess of 30% of our drugs are sourced directly from plants,
>60% of the drugs introduced in the past 20 years are based on plant extracts or their close
derivatives [3]. Given the importance of plant metabolism to plant development and adaptation,
and for human health, numerous studies have been performed to decipher the genetic
regulation of plant metabolism [1–7]. Recently, the development of broad profiling approaches
such as genomics, transcriptomics, and metabolomics has aided exploration of the diversity
of plant metabolism as well as the underlying molecular mechanisms by which the plant cell
controls its own chemical composition [6]. We review here our current understanding of the
biochemistry and genetics which underlie the massive diversity apparent in plant metabolism,
and provide a perspective on how this likely evolved. We also comment on the linkage between
metabolite levels and morphological phenotypes, and conclude by outlining future challenges
that need to be addressed. Specifically, we focus on how and why this extraordinary level of
diversity has arisen, and why it currently persists or even expands.
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Genetic and Biochemical Insights into Plant Metabolism
The Diversity of Plant Metabolism
Although most primary metabolites constitutively accumulate in plant cells [8], the majority of
specialized metabolites are only detected in defined species, within particular tissues/organs,
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Glossary
Ancestral protein resurrection:
advances in phylogenetics and DNA
synthesis techniques have made it
possible to infer the sequences of
ancestral genes and then synthesize
and express them in the laboratory.
As a result, hypotheses about the
functions of ancient genes – and the
mechanistic basis for their evolution
– can now be empirically tested
using the reductionist power of
experimental molecular biology.
Gene cluster: a gene family is
composed of several genes which
share similar features. A gene cluster
is part of a gene family, and is a
group of two or more genes in the
at given developmental stages, or under specific environmental conditions. There are legion
examples of the specificity of specialized metabolism: for example, glucosinolate defense
compounds are largely confined to the Brassicaceae [12,13], and acyl sugar production is
largely specific to glandular trichromes [14], whereas alkaloid-, terpene-, and phenlypropanoid-
derived metabolites are much more widely spread [15–17]. Among the latter, trihydroxycinna-
moyl spermidine derivatives were initially found to be synthesized in Arabidopsis thaliana and to
accumulate in the pollen coat [18]. Moreover, although trihydroxycinnamoyl spermidine con-
jugates represented the major forms of spermidine derivatives in the pollen coat of most
eudicots, they were undetectable in monocots [18]. That said, this class of compounds is
illustrative of how recent research has revealed that both qualitative and quantitative variation of
metabolism is much larger than had previously been thought. Leaves of Zhonghua11, a typical
japonica rice accession display high levels of N0,N00-diferuloyl spermidine, whereas typical indica
accessions do not [19]. Moreover, this accumulation in japonica follows a developmental
gradient, being very high in young leaves but declining dramatically during leaf development
[19] (Figure 1A). Furthermore, various metabolites display environmentally induced
DNA of an organism that encode for
similar polypeptides, or proteins,
which collectively share a generalized
function and are located within a few
kb of each other. The size of gene
clusters can vary significantly, from a
few genes to several hundred genes.
Portions of the DNA sequence of
each gene within a gene cluster are
found to be identical; however, the
protein encoded by each gene is
distinct from the protein encoded by
another gene within the cluster.
Genes found in a gene cluster may
be near one another on the same
chromosome or on different but
homologous chromosomes. Because
of DNA sequence homology, the
presence of gene clusters on the
same chromosome suggests a close
evolutionary relationship between two
species. Therefore, a gene cluster
may be used to assess the
evolutionary relationship between
organisms.
Metabolite: metabolites are the
intermediates and products of
metabolism. The term metabolite is
usually restricted to small molecules.
Metabolites have various functions,
including fuel, structure, signaling,
stimulatory and inhibitory effects on
enzymes, catalytic activity of their
own (usually as a cofactor to an
enzyme), defense, and interactions
with other organisms.
Metabolome: the complete set of
small-molecule chemicals found
within a biological sample.
Metabolomics: the scientific study
of chemical processes involving
metabolites. Specifically,
metabolomics is the ‘systematic
study of the unique chemical
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Figure 1. The Diversity of Plant Metabolism. (A) N0,N00-diferuloyl spermidine accumulation in japonica follows a
developmental gradient with very high levels in young leaves but declining dramatically during leaf development [19]. (B)
Metabolites display environmentally induced accumulation. Plants irradiated by UV-B light produce dramatically more p-cou-
maroylagmatine [20], whereas herbivory commonly leads to a burst in biosynthesis of jasmonic acid and its derivatives [21].
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fingerprints that specific cellular
processes leave behind’ – the study
of their small-molecule metabolite
profiles.
Primary metabolites: a type of
metabolite that is directly involved in
normal growth, development, and
reproduction. It usually performs a
physiological function in the organism
(i.e., has an intrinsic function). A
primary metabolite is typically present
in many organisms or cells. It is also
referred to as a central metabolite,
which has an even more restricted
meaning (present in all autonomously
growing cells or organisms).
Common examples of primary
metabolites include ethanol, lactic
acid, and particular amino acids.
Secondary metabolites: organic
compounds that are not directly
involved in the normal growth,
development, or reproduction of an
organism. These are also referred to
as specialized metabolites, often
restricted to a narrow set of species
within a phylogenetic group.
Secondary metabolites often play an
important role in plant defense
against herbivory and other
interspecies defenses.
Selective sweep: the reduction or
elimination of variation among the
nucleotides in neighboring DNA of a
mutation as the result of recent and
accumulation across species. For instance, plants irradiated by UV-B light produce dramati-
cally more p-coumaroylagmatine [20], whereas herbivory commonly leads to a burst in
biosynthesis of jasmonic acid and its derivatives [21] (Figure 1B). These examples highlight
the dynamism of metabolism, but should also act as a cautionary note that it is dangerous to
infer the specificity of metabolite production from studies that do not take into account analyses
which include comprehensive tissue, developmental, and environmental components. That
said, the fact that we now have access to a huge number of genomes of the green lineage [22]
provides powerful resources for assessing the likely presence of metabolic pathways, as
illustrated by recent surveys of shikimate, phenylpropanoid, and acyl sugar metabolism
[17,23,24]. Similar surveys have also described the enormous diversity in metabolite transport
mechanisms (Box 1). However, as we detail below, such studies ultimately need to be
supported by detection of the metabolites in question to provide functional evidence that
gene paralogs have maintained their initial function.

Dissection of the Genetic and Biochemical Bases of Plant Metabolic Diversity
In studying the diversity of plant metabolism it is important to elucidate how each metabolite is
synthesized, transported, and degraded, and how these processes are regulated. Tremendous
progress has been achieved using reverse genetic approaches to elucidate the biosynthesis
and control of Arabidopsis metabolite accumulation, especially concerning secondary
metabolites in this species [25]. Indeed, advances in profiling technologies have enabled
analysis of the variation of metabolites both between species and within natural accessions of a
single species [25,26]. Moreover, population genetic studies integrating metabolic profiling and
quantitative genetics have begun to reveal the genetic regulation of the metabolome in both
model and crop species [27–29]. Candidate genes responsible for the accumulation of specific
secondary metabolites can be identified through correlative analysis of various omic datasets,
including genomics, transcriptomics, proteomics, and metabolomics, combined with the use
of forward and reverse genetics. This strategy is further facilitated by recent advances in next-
generation sequencing technology.
strong positive natural selection. A
selective sweep can occur when a
new mutation occurs that increases
the fitness of the carrier relative to
other members of the population.
Natural selection favors individuals
that have a higher fitness, and with
time the newly mutated variant (allele)
will increase in frequency relative to
other alleles. As its prevalence
increases, neutral and nearly neutral
genetic variation linked to the new
mutation will also become more
prevalent. This phenomenon is called
genetic hitchhiking. A strong
selective sweep results in a region of
the genome where the positively
selected haplotype (the mutated
allele and its neighbors) is essentially
the only haplotype in the population,
resulting in a large reduction in the
total genetic variation in that
chromosomal region.

Box 1. Structural Features Underpinning Plant Metabolic Diversity

When plant metabolic diversity is assessed through the lens of the genomes which guide it, considerable genomic
architecture becomes apparent. This is evidenced by the frequent observation of metabolic quantitative trait loci (mQTL)
hotspots both of multiple compound classes and within multiple species [31,35,37,47,115]. Moreover, tandem genes
are over-represented in such hotspots [35,45,86]. However, it can additionally be seen merely in the genome structure
itself. That is because a large number of specialized metabolic pathways are controlled by regulon-like gene clusters
[62,116], although the genes encoding the enzymes of many pathways are randomly scattered throughout the genome.
We focus our discussion here on the largest class of specialized metabolites – the terpenoids – detailing structural
variations such as copy-number variations and presence/absence variations that are associated with chemodiversity.
Several gene clusters relating to terpenoids have been reported, including those for arabidiol synthase in Arabidopsis
thaliana [117] and ingenol mebutate in the Euphorbiaceae [118]. Zerbe and Böhlmann attempted a detailed phylogenic
annotation of diterpene synthase gene functions, concluding that it was very difficult to faithfully assign gene function
[119]. That said, given the ever-increasing volume of functional studies and species for which sequence data are
available, this may prove easier and facilitate studies of their evolution in the future. Two recent studies elegantly
demonstrate how such data enhance our understanding of evolution. In the first, investigations of the primary drivers of
diversity, namely terpenoid synthase (TS) and cytochrome P450s (CYPs), identified different evolutionary routes in which
either (i) microsyntenic blocks of TS/CYPs duplicate and provide templates for the evolution of new pathways, or (ii) new
pathways arise by mixing and matching of individual TS and CYPs [15]. The second study used genome mining to
identify terpene synthase and prenyltransferase gene pairs, followed by structural modeling studies to identify the
residue responsible for the structural variation of the terpenoids across the Brassicaceae [120]. This study additionally
suggests convergent evolution of plant and fungal sesqueterpene synthases, and suggests that the colocalized terpene
synthase and prenyltransferase gene pairs likely originated from a common ancestral gene pair present before
speciation. Asides from these detailed examples, two recent computational approaches aiming to identify gene clusters
in genomes have provided important hints for the evolution of many more facets of plant secondary metabolism
[121,122].
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For example, Sadre et al. recently identified two essential genes for camptothecin biosynthesis
in Camptotheca acuminate by analyzing transcriptome and metabolome data combined with
reverse genetics [30]. Being a monoterpene indole alkaloid, the biosynthesis of camptothecin is
dependent on conversion of 8-oxogeranial to iridodial, and of tryptophan to tryptamine.
Metabolic profiling revealed that tryptamine only accumulated in stem, shoot apex, and young
leaf tissues of Camptotheca acuminate, indicating tissue-specific expression of the corre-
sponding gene(s). There are two differentially expressed tryptophan decarboxylase genes,
TDC1 and TDC2, for the biosynthesis of tryptamine in Camptotheca acuminate. TDC1 is
expressed in tissues accumulating tryptamine, while TDC2 is barely detectable. CYCLASE 1
(CYC1), that functions in the conversion of 8-oxogeranial to iridodial, was additionally found to
be coexpressed with TDC1, indicating that it might be an additional determinant of campto-
thecin biosynthesis. The in vivo function of TDC1 and CYC1 in camptothecin production were
further validated by transgenic assays [30]. Combined analysis of transcriptome and metab-
olome data is a powerful tool to decipher genetic determinants of metabolic pathways, but
lacks the power to unravel the genetic basis of natural variation in the metabolome. To access
such information the analysis of natural variation using population genetics is now becoming
widely adopted. This is usually investigated by linkage mapping, in other words quantitative trait
locus (QTL) mapping using artificial breeding populations, and/or by genome-wide association
studies (GWAS) using unrelated natural populations (Figure 2).

Recent advances in next-generation sequencing technology provide us with opportunities to
identify metabolic quantitative trait loci (mQTLs) using ultra-high-density maps. For example,
Gong et al. recently carried out mQTL mapping with an ultra-high-density map consisting of
1619 bins generated by population sequencing. Hundreds of mQTL in flag leaf or germinating
seed were identified, with a significant deviation from a random distribution across the 12
chromosomes. A total of 44 and 16 potential mQTL ‘hotspots’ were identified in flag leaf and in
germinating seed, respectively [27]. Tissue-specific accumulation of metabolites, especially
secondary metabolites, is of special importance for the survival and adaptation of plant species.
mQTL mapping with different tissues was able to decipher the divergent and convergent
genetic regulation of metabolism across tissues. Comparative analysis of mQTLs of individual
metabolite identified in two tissues revealed that the majority of QTLs are under different genetic
control. Despite the overall tissue-specific regulation of metabolism, 23 loci for 19 metabolites
were detected simultaneously in both tissues, suggesting considerable overlap of genetic
control of metabolism between different tissues of rice [27], and a similar observation was also
made for maize [31] and tomato [32].

Metabolic GWAS (mGWAS) in a broad number of plant species has shown that plant metabo-
lism is generally moderately heritable [33,34], as would be anticipated for polygenic traits. For
example, among the 840 metabolite features detected in rice leaf, >50% displayed broad-
sense heritability >0.5, and >70% of the metabolic features displayed at least one significant
association and an average of 4.9 associations per metabolite feature [35]. Complex traits,
such as plant height and grain shape, are controlled by numerous loci of small effects [36],
whereas metabolite content, especially of secondary metabolites, is generally determined by a
small number of loci with large effects [35]. That said, natural variation in primary metabolites
tends to more closely resemble the aforementioned physiological traits in being controlled by
many loci of smaller effects [28,37]. A common feature in the genetic architecture of metabolism
is the prevalence of hotspots of major genes/genome regions that determine the natural
variation of large sets of metabolites [28,38]. More detailed evaluation in Arabidopsis revealed
that some of the hotspots are within regions of the genome that were previously identified as
being subject to recent strong positive selection (selective sweeps), and in regions showing
4 Trends in Plant Science, Month Year, Vol. xx, No. yy
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Figure 2. Metabolic GWAS (mGWAS)-Based Dissection of the Genetic Basis of the Plant Metabolome. An essential first step toward unveiling the genetic
basis of plant metabolome via mGWAS is to collect suitable experimental populations. Subsequently, raw data of metabolome, genome, and transcriptome should be
collected for further multi-omic analysis. Causative genes can be identified through intensive data mining and validated by in vivo and/or in vitro experiments.
trans-linkage to these putative sweeps, suggesting that selective forces have impacted on
genome-wide control of Arabidopsis metabolism [28]. The effects of interactions between
genotypes, environment, and development on the accumulation of secondary metabolites
have been well documented within structured mapping populations. mGWAS on the naturally
occurring variation of glucosinolate accumulation in Arabidopsis showed a significant bias
toward identifying different causal genes for the glucosinolate phenotypes under different
Trends in Plant Science, Month Year, Vol. xx, No. yy 5
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developmental stages [29], which suggests that natural variation of glucosinolates is genetically
controlled in a spatiotemporal manner. Interestingly, distinct genetic control of metabolism was
also observed at subspecies level. mGWAS hotspots were located on different chromosomes
in the indica and japonica subspecies of rice [35].

Correspondence among crop QTLs for agronomic performance has been characterized by
comparative linkage mapping among crop plants such as wheat, maize, and rice [39]. To
identify conserved regulators of metabolic trait(s) across species, the concept of comparative
linkage mapping was modified and extended to mGWAS. Comparative mGWAS between rice
and maize was performed by exploring the convergent genetic determinants for the metab-
olites detected in both species [40]. A total of 420 and 292 loci were detected for the 123
codetected metabolites in rice and maize, respectively. There were 42 homologous loci
underlying the abundance of �19% of codetected metabolites between the two species.
Novel candidate genes for the codetected metabolites were subsequently identified in the
comparative mGWAS. Taking advantage of the high resolution and SNP saturation in maize
and rice mGWAS [31,41], Chen et al. performed comparative mGWAS and were therefore able
to examine the convergent genetic loci that determine the natural variation of the same, or
similar, metabolites [40]. It is important to note that this strategy is restricted de facto to the
‘common’ loci shared between plant species.

Association mapping by GWAS using a natural population is suitable for screening a large
number of accessions for common variants within the population at relative high resolution
[36], while linkage mapping using artificial populations such as recombinant inbred lines and
introgression lines is likely to be more powerful in identifying alleles with low frequency or
small effects in the population [42,43]. Joint linkage and association mapping has proved to
be powerful not only in cross-validating results from one another but also in complementing
each other in identifying new causative loci [44]. For example, association and linkage
mapping of 11 phenolamides (PAs) was performed based on metabolic profiling in grain and
leaf of rice [45]. Peng et al. identified significant associations for >80% of the 11 PAs, with
an average of about three loci for each individual metabolite in leaf and grain. In general,
those loci showed large effects, up to 43.1%, with an average of >12% in each tissue. This
indicated that the levels of most PAs are controlled by a few major loci with large effects. To
independently dissect the genetic basis of PA variation, biparental QTL analyses were
performed with a recombinant inbred population generated from Zhenshan97 (ZS97) and
Minghui63 (MH63) [27]. In total, seven significant chromosome regions for loci with LOD
(logarithm of the odds) values >6.0 were identified, explaining 10.1–71.1% of the total
variation in the population, and three of them were shared with the loci detected by GWAS.
These loci showed, overall, relatively high resolution, ranging from 0.12 to 1.31 Mb, with an
average of 0.54 Mb, possibly owing to the high resolution of the map generated by second-
generation sequencing of the population [45]. Similarly, the combination of the two
approaches has also been demonstrated to be highly informative in the study of primary
metabolism in maize [46] and tomato [47].

Multidimensional analysis and multi-developmental stage analysis have been increasingly used
to provide clues for understanding biological mechanisms because combining multiple data-
sets can compensate for missing or unreliable information in any single data type [48].
Metabolic profiling combined with transcriptome analysis has been utilized to dissect second-
ary metabolic pathways such as for steroidal glycoalkaloid (SGA), phenylpropanoid, and
flavonoid biosynthesis, elucidating vital roles of novel gene clusters as well as of the GAME9
transcription factor [49,50]. Joint metabolomic and genomic data subsequently allowed a
6 Trends in Plant Science, Month Year, Vol. xx, No. yy
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comprehensive refinement of SGA biosynthesis [51]. In addition to the substantial inroads
made in the targeted studies described above, global insights into metabolic regulation were
also obtained. Multidimensional analysis of 100s of genomes, transcriptomes, and metab-
olomes was performed to provide new discovery leads for identifying genes controlling
metabolic pathways in tomato fruits, including those for flavonoids and SGA metabolism.
The overlap of mGWAS and expression QTL (eQTL) results generated >13 000 triple relation-
ships (metabolite–SNP–gene), including 371 metabolites, 970 SNPs, and 535 genes [47]. This
dataset thus facilitates both causal gene identification and metabolic pathway elucidation. For
example, one mGWAS signal of the SGA hydroxytomatidenol (SlFM0964) was also supported
by the eQTL of Solyc03g118100, an oxidoreductase gene that was previously reported to play
an important role in SGA biosynthesis [47], indicating the power of this approach in evaluating
metabolic control.

Furthermore, with the increasing number of genome sequences available from closely or
more distantly related species, it is becoming possible to combine comparative genomic
analysis with metabolomics in gene identification and pathway elucidation. Various types of
cucurbitacins have been identified from cucurbit plants, such as cucurbitacin B from
melon, cucurbitacin C from cucumber, and cucurbitacin E from watermelon [52]. A
comparative genomic study revealed conserved genes encoding cytochrome P450s
and acyltransferases for the biosynthesis of distinct cucurbitacins [53]. Comparative
genomic analysis is thus able to unveil the genetic basis of the divergence of metabolite
biosynthesis. Although abscisic acid (ABA) is present in numerous species, the conversion
of ABA to phaseic acid and subsequently to dihydrophaseic acid has only been found in
terrestrial plants. In a comparative genomic study, a seed plant-specific clade of DFR-like
NAD(P)H-dependent reductases was identified, including AtADH2, a key regulator of
phaseic acid accumulation [54].

The Evolution of Plant Metabolic Diversity
The study of the evolution of metabolism has blossomed in the past decade, having previously
lagged considerably behind the evolution of development. This has been led primarily by
advances in genome and exome sequencing [55,56], but latterly cross-species metabolic
profiling has also significantly boosted this research field by providing functional evidence of
gene neofunctionalization as well as for convergent and divergent evolution of metabolic
functions [40,57]. Several mechanisms for the evolution of metabolism have been evidenced,
with the most frequently described being (i) gene duplication and divergence, (ii) gene loss, and
(iii) the evolution of substrate preference and promiscuity [23]. Local and whole-genome
duplication (WGD) and subsequent sub- or neofunctionalization have contributed greatly to
the metabolic diversity of land plants. Interestingly, gene duplication is far more prominent in
plants than in other species [58], perhaps because, given their sessile nature, plant populations
must be extremely adaptive to their environment. It is important to note that several isoforms
exist for the enzymes in many of the major central metabolic pathways [59], and that for
example the mitochondrial carrier family which catalyzes the transport of primary metabolites
has also dramatically expanded by gene duplication [60], as has the number of sugar trans-
porters [61]. However, gene duplications and gene clustering are considerably more promi-
nently associated with plant secondary metabolism. Indeed many pathways for specialized
metabolism in plants came about following duplication of genes of primary metabolism. Given
that these aspects have been the subject of several previous reviews [62,63], in Box 1 we
largely restrict ourselves to discussing the largest category of specialized metabolites, namely
the terpenes, as well as providing a few recent examples in acyl sugar and phenylpropanoid
metabolism.
Trends in Plant Science, Month Year, Vol. xx, No. yy 7
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Beyond these examples, recent studies on the evolution of nicotine biosynthesis [64] and
the convergent evolution of caffeine in plants [65] provide interesting insight. The former was
carried out via comparative analysis of two wild tobacco genomes, namely the considerably
larger genome of Nicotiana attenuata and that of Nicotiana obtusifolia, which allowed the direct
association of genome evolution with the assembly of the nicotine biosynthetic pathway. In
doing so, the authors were able to conclude that both gene duplication and the insertion of
transposable elements played an important role in the evolution of this chemical ecological trait
[64]. The study concerning the evolution of caffeine followed up on earlier research of the same
group that used enzymes of the salicylic acid/benzoic acid/theobromine (SABATH) family to
demonstrate the potential of ancestral protein resurrection, in which non-preferred or even
latent ancestral protein activities may be coopted at later times to become the primary or
preferred protein activities [66] as an evolutionary driver of metabolic diversity. Application of
this approach to the evolution of caffeine in plants revealed that convergent caffeine production
surprisingly arose from two previously unknown biochemical pathways in coffee, tea, choco-
late, citrus, and guarana plants. Furthermore, by resurrecting extinct enzymes that ancient
plants once possessed, they revealed that the novel pathways would have evolved rapidly
owing to cooption from their prior role to that in caffeine biosynthesis for which they were
already primed [65].

Although the evolution of plant secondary/specialized metabolism is far too vast a subject to
comprehensively review, there are four further areas of metabolism (in addition to the terpe-
noids detailed in Box 1) which provide important illustrations of how current experimental tools
can provide insight into the mechanisms underlying the evolution of metabolism. Gene
duplication and changes in substrate specificity are well characterized in the evolution of
glucosinolate biosynthesis. Study of the enzyme crystal structures suggested that side-chain
binding most likely underlies the difference in substrate specificity between the ancestral
enzyme involved in leucine biosynthesis [67]. This hypothesis was further confirmed in gluco-
sinolate biosynthesis by site-directed mutagenesis [67]. Similarly, a combination of sequence
comparison and homology modeling demonstrated that the second enzyme of acylsugar
biosynthesis in tomato is highly specific in cultivated tomato, but promiscuous in wild tomatoes,
allowing the identification of the residue responsible for this difference [68]. Crystal structures of
two 4-coumarate:CoA ligases also yielded insight into the evolution of their substrate prefer-
ences [69,70], and a recent study in Arabidopsis demonstrated that one of the four isoforms of
the enzyme encoded in the genome catalyzes the formation of caffeoyl-CoA, and is thus
important in syringyl lignin formation [70]. Finally, BAHD acyltransferases responsible for
phenolamine biosynthesis have recently been characterized to display allelic variation for tissue
specificity [45]. These combined examples illustrate that the evolution of metabolic novelty is
driven by various factors, including changes in substrate promiscuity, enzyme activity, and
gene expression, as well as by gene duplication [71].

Aside from the details of the evolution of specific pathways, however, it is important to
understand the broad scope of the evolution of metabolism. This has been elegantly covered
by Washburn et al. [63] who reviewed examples of convergent evolution across all domains
of life, but they argue that the plant kingdom is particularly tractable for its study. They further
state that the loss and retention of features of gene duplication, such as in the domestication
syndrome, provide examples that strongly support this claim. In addition, the multiple
appearances (and configurations) of C4 and crassulacean acid metabolism (CAM) and
hybrid vigor are highly pertinent aspects of plant evolution. Indeed, C4 and CAM metabolism
have been suggested to have evolved >60 times and at least 35 times, respectively [72,73],
and considerable evidence links metabolic traits to hybrid vigor [74]. Washburn et al.
8 Trends in Plant Science, Month Year, Vol. xx, No. yy
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additionally highlight fascinating observations that aspects of the latter are conserved across
the kingdoms of life [22], and that the Crabtree and Warburg effects of yeast and cancer
cells, respectively, harbor considerable metabolic similarities [75,76], suggesting that the
drive for efficient functionality means that convergent evolution has an amazingly broad
scope. Staying at the general level, a recent modeling study evaluated E. coli metabolism
with regard to what the authors refer to as ‘diversity-generating biosynthesis’, which they
postulate evolved to produce large numbers of different metabolites [77]. With promiscuity
increasing further down the specialized pathway studied, this study provides general
principles for diversity-generating mechanisms underlying the expansion of specialized
metabolism. It will thus be interesting to see how such models stand up against the vastness
of plant secondary metabolism.

To conclude this section we discuss recent insight into the impact of crop domestication on
metabolic diversity. Although a large number of exome studies have been performed in a range
of crop species and their progenitors [55,78], so far very few studies have been conducted at
the metabolite level in a manner that allows evaluation of the impact of the domestication
syndrome on either metabolic diversity or the abundance of diverse metabolites [47,79].
Starting with the simpler study, deep evaluation of changes in primary metabolism revealed
that a reduction in unsaturated fatty acids was evident during the (primary) domestication of
emmer wheat, but that selection-driven changes in the amino acid content mark the domesti-
cation of durum wheat [79]. In the more extensive recent study, the impact of domestication on
the fruit metabolome in tomato was investigated [47]. In this study the genomes, transcrip-
tomes and metabolomes of between 399 and 610 genotypes were evaluated, and the question
was addressed of how breeding has globally altered fruit chemical composition [47]. As can be
seen in Figure 3, three independent selective events played a major role: (i) selection for larger
fruits altered the metabolite profiles owing to linkage drag, (ii) selection for pink tomatoes
preferred in the Asian market was associated with considerable metabolic changes, and (iii)
introgression of resistance genes also resulted in major and unexpected changes. This study
provided the first direct evaluation of the chemical compositional consequences of domesti-
cation at such a scale; however, as stated in the review by Giovannoni, it is highly likely that the
findings are reflective of the mechanisms underpinning the evolution of metabolism in all our
major crops [80].

Linking Metabolic Variation to Plant End-Phenotypes
In addition to elucidating the genetic and biochemical bases of plant metabolism, analysis of the
metabolome in genetically diverse populations can also facilitate the dissection of phenotypic
traits (Figure 4). At its simplest, the identification of common genomic regions which affect both
metabolic and morphological traits can be established and physiological linkages determined
[43]. Results from such studies in Arabidopsis and maize revealed considerable overlap
between the levels of several primary metabolites and lignin precursors with biomass produc-
tion [41,81]. Similarly, in a parallel QTL analysis in potato, loci for metabolites were found to be
colocalized with those for starch- and cold sweetening-related traits [82]. This approach was
taken a step further by evaluating correlation networks in a tomato introgression line population
by subjecting the observation that amino acid content was negatively associated with the
harvest index to experimental trials wherein the fruit load was experimentally manipulated [83].
More recently, combined studies on the metabolite composition of multiple tissues across
broad metabolic populations have been carried out in both tomato and maize [31,32]. The
study in tomato demonstrated that correlation between metabolites is affected by develop-
mental stages [32], whereas that in maize revealed different genetic determinants of metabolic
features across tissues [31]. These studies thus demonstrate the power of this approach to
Trends in Plant Science, Month Year, Vol. xx, No. yy 9
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Figure 3. Evolution of Metabolic Diversity during Tomato Breeding. A multi-omic view of metabolic breeding
history was proposed based on genomic, transcriptomic, and metabolic data from a large collection of tomato accessions
[47]. The metabolome is shaped by three independent selective events: (i) selection for larger fruits altered the metabolite
profiles as a result of linkage drag, (ii) selection for pink tomatoes preferred in the Asian market was associated with
considerable metabolic changes, and (iii) introgression of resistance genes also resulted in major and unexpected
changes. Abbreviations: BIG, Solanum lycopersicum group; CER, lycopersicum var. cerasiforme group; eQTL, expression
quantitative trait locus; mGWAS, metabolic GWAS; PIM, S. pimpinellifolium group.
decipher physiological mechanisms with a higher resolution, which may aid in future metabolic
engineering strategies.

However, perhaps surprisingly given the major insights recently obtained on source–sink
interactions from a developmental perspective [84,85], relatively little research has been carried
out on characterizing the metabolism of extreme natural variants in organ size. That said,
considerable recent molecular analyses of natural variation have identified enzyme-encoding
genes and have associated plant metabolism with variation in morphological and develop-
mental traits. However, comparative genetic analyses of both metabolic and phenotypic traits
at higher genetic resolution is necessary (especially for minor QTL) to allow better dissection of
the causative factors underlying phenotypic traits [57,86–88]. That said, some powerful
examples of the power of this approach come from studies demonstrating that metabolite
profiling of young plants can offer good predictions as to their future growth potential [88], and
in linking metabolism either to the clock [87] or to resistance to (a)biotic stress [57,86].
10 Trends in Plant Science, Month Year, Vol. xx, No. yy
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(Figure legend continued on the bottom of the next page.)

Metabolome-Facilitated Dissection of Phenotypic Traits. Three catalogs of metabolites contribute to facilitating the dissection of phenotypic traits,
including compounds as components (represented by pentastars) or biomarkers (represented by circles) of phenotypic traits, and metabolites as signals leading to
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Outstanding Questions
How to detect and dissect diversity in
transportation, storage, and even deg-
radation of metabolites with multi-omic
strategies?

How to unveil the biological functions
of structually similar but distinct
metabolites?

What are the effects of different mod-
ifications on the biochemical and bio-
logical functions of metabolites?

To date, causative genes underlying
metabolic diversity identified by
mGWAS mainly belong to structural
genes and a few transcription factors.
What could we do to comprehensively
dissect metabolite pathways and char-
acterize gene function in post-tran-
scriptional, post-translational, and/or
epigenetic manners?

How can we rationally design plant-
based cell factories for the large-scale
production of metabolites with com-
mercial importance?
Moreover, many recent studies have provided support for metabolite sensing, including
considerable evidence that sugars, organic acids, and amino acids are sensed and that, once
perceived, can dramatically impact on aspects of plant development [89,90]. Surprisingly, there
is a lack of identified plant metabolite receptors which, by analogy to mammalian and microbial
systems, would be activated to mediate such signaling [91]. This is arguably part of a more
general problem facing the plant metabolic biologist – namely that of metabolite function.
Although most metabolomic research is directed toward the more technical challenge of
improving our coverage of the plant metabolome, the exact in vivo function of the majority
of plant metabolites is poorly understood [91]. This fact is further compounded by the results of
several recent studies indicating that a range of phytochemicals have roles additional to those
traditionally ascribed to them. For example, the roles of flavonoids, in general, were demon-
strated, in a suite of mutants of the core pathway, to be important both under conditions of
oxidative and drought stress [92]. However, these studies were only able to draw general
conclusions, and further studies will be necessary to dissect the specific quantitative contri-
butions of the individual flavonoid species to the observed resistance. More precise identi-
fications of function have been provided in the identification of modified flavonoids conferring
UV tolerance [86] as well as metabolite-mediated defense [11]. However, in these cases it is not
clear whether the defined function is the sole function of the metabolite or not. This caveat
notwithstanding, our understanding of the metabolic events which are crucial in defining end-
phenotypes has greatly benefited from the marriage of metabolomics, natural genetic diversity,
and next-generation sequencing. With the increasing application of a wide range of profiling
techniques to immortalized genetic populations, it would seem highly likely that further insights
will be made in this research frontier that will be highly valuable for the rational design of future
metabolic engineering strategies.

Concluding Remarks and Future Outlook
Past research has focused largely on enhancing our technical capacities to annotate ever more
metabolites. This type of data evaluation was aided by several important recent developments,
including the advent of high-resolution mass spectrometry (Box 2) and better computational
methods. However, a far more exciting research front, towards the genetic control of metabo-
lism, has been provided by the marriage of metabolomics, genetics, and next-generation
sequencing. We have provided here a broad synthesis of recent advances with the aim of
understanding how the immense metabolic diversity of the plant kingdom has evolved. Studies
combining genome, transcriptome, and metabolome data clearly have immense potential in
advancing our understanding of the metabolic networks underlying specialized metabolism. It
is our opinion that genome and transcriptome data emanating from next-generation sequenc-
ing approaches need to be complemented more frequently with metabolomic data as well as
with data from contemporary genetic techniques. Although the articles covered here have
begun to address important questions, such as the elucidation of the structure of biosynthetic
pathways, the impact of artificial selection on the metabolomes of our crop plants, and the link
between the metabolome and end-phenotypes, many further questions remain to be tackled
(see Outstanding Questions). Importantly, 20 years after the advent of metabolomics, the
availability of an advanced toolkit now allows us to address these questions and expand our
understanding of the forces driving plant metabolic diversity and the functionality that it confers
to the host organism.
corresponding traits. Metabolite–trait interaction could be tested by various network or intercorrelation analyses. Parallel GWAS combined with metabolic GWAS and
phenotypic GWAS or mGWAS could be subsequently performed to identify causative genes whose function in regulating metabolite accumulation and phenotype
should be further validated by in vivo and/or in vitro experiments. Abbreviations: GW, grain width; JA-Ile, jasmonate-isoleucine; mGWAS, metabolic GWAS; OX, over-
expression; WT, wild type.
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Box 2. Mass Spectrometry (MS)-Based Metabolomics

The complexity of the metabolome has so far made it impossible to perform profiling of the entire metabolic complement
with a single platform-based approach. We focus here on arguably the most developed platforms, namely MS-based
analytical systems, which are attracting increasing attention owing to their high coverage, sensitivity, and resolution.
MS-based metabolic profiling can be broadly categorized as being either untargeted or targeted. A general strategy for
untargeted metabolome analysis is to characterize features that are different in the sample sets compared, and
thereafter to elucidate their corresponding structures [93]. Current methods are frequently able to detect diverse mass
signals in a single analysis and generate structural predictions [93,94]. Because untargeted studies are more challen-
ging to interpret, more holistic and systematic approaches going beyond the current state of the art will be necessary to
derive functional insights [95]. By contrast, in comparison to untargeted metabolomics [34,94,96], widely targeted
metabolomics based on multiple reaction monitoring (MRM) is more sensitive and accurate. Current approaches define
targets based on screening the samples using MRM conditions optimized from the available authentic standards,
whereas endogenous metabolites within the samples are not subject to specific ‘targeting’. Many efforts have been
made to obtain MS/MS (MS2) acquisition for both known and unknown metabolites [97–100]. A novel liquid chro-
matography (LC)–MS2 method using multiple ion monitoring (MIM) as a survey scan to trigger the acquisition of
enhanced product ions (EPI) has recently been developed [101]. This method is able to obtain MS2 acquisition for both
known and unknown metabolites. This method was refined to develop a novel strategy called stepwise MIM–enhanced
product ions (stepwise MIM–EPI) [102]. Integrating the data gathered from the resultant M22 spectral tag (MS2T) library
and other available MRM information allows the quantification of hundreds of metabolites, and its use within GWAS has
proved to be very powerful in dissecting the genetic and biochemical bases of metabolic diversity [35,40,47,103]. Mass
accuracy and resolving power are vital for compound identification in MS-based metabolomic studies. Owing to the
ultimate high resolution and high mass accuracy, Fourier transform ion cyclotron resonance MS (FT–ICR–MS) has been
adopted for metabolome analysis in several species [104–107]. With the development of MS-based metabolomic
studies, several MS2 databases are available, including METLIN [108], BinBase [109], HMDB [110], MMCD [111],
MassBank [112], and ReSpect [113]. To effectively identify compounds with similar chromatographic behavior and UV
absorption properties in plant metabolomic analyses, Lei et al. constructed an ultraperformance LC (UPLC)–MS/MS
library [114].
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