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Multimodal assessment of Parkinson’s disease: a
deep learning approach

J. C. Vásquez-Correa, T. Arias-Vergara, J. R. Orozco-Arroyave, B. Eskofier, J. Klucken, and E. Nöth

Abstract—Parkinson’s disease is a neurodegenerative disorder
characterized by a variety of motor symptoms. Particularly,
difficulties to start/stop movements have been observed in pa-
tients. From a technical/diagnostic point of view, these movement
changes can be assessed by modeling the transitions between
voiced and unvoiced segments in speech, the movement when
the patient starts or stops a new stroke in handwriting, or the
movement when the patient starts or stops the walking process.
This study proposes a methodology to model such difficulties
to start or to stop movements considering information from
speech, handwriting, and gait. We used those transitions to train
convolutional neural networks to classify patients and healthy
subjects. The neurological state of the patients was also evaluated
according to different stages of the disease (initial, intermediate,
and advanced). In addition, we evaluated the robustness of the
proposed approach when considering speech signals in three
different languages: Spanish, German, and Czech. According to
the results, the fusion of information from the three modalities
is highly accurate to classify patients and healthy subjects, and
it shows to be suitable to assess the neurological state of the
patients in several stages of the disease. We also aimed to interpret
the feature maps obtained from the deep learning architectures
with respect to the presence or absence of the disease and the
neurological state of the patients. As far as we know, this is one
of the first works that considers multimodal information to assess
Parkinson’s disease following a deep learning approach.

Index Terms—Parkinson’s Disease, Deep Learning, Convolu-
tional Neural Networks, Speech, Handwriting, Gait.

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most common
neurodegenerative disorder in the world, and affects about

2% of people older than 65 years [1]. PD is characterized
by the progressive loss of dopaminergic neurons in the mid-
brain producing several motor and non-motor impairments [2].
Motor symptoms include among others, bradykinesia, rigid-
ity, resting tremor, micrographia, and different speech im-
pairments. Non–motor symptoms include depression, sleep
disorders, impaired language, and others [3]. The level and
characteristics of motor impairments are currently evaluated
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according to the Movement Disorder Society – Unified Parkin-
son’s Disease Rating Scale (MDS-UPDRS) [4]. Section III
of the scale contains several items to assess motor impair-
ments. The evaluation requires the patient to be present at
the clinic, which is expensive and time-consuming due to
several limitations including the availability of neurologist
experts in the hospital and the reduced mobility of the patients.
The evaluation of motor capabilities is crucial for clinical
experts to make decisions about the medication dose or therapy
exercises for the patients [5]. The analysis of bio-signals
such as gait, handwriting, and speech helps in objectively
assessing motor symptoms of patients, providing additional
and objective information to clinicians to make accurate and
timely decisions about the treatment. The research community
is interested in developing technology that helps the automatic
evaluation of the neurological state of PD patients considering
different bio-signals such as speech, handwriting, and gait.

A. Assessment of PD from speech

Speech symptoms in PD patients are grouped and typically
called hypokinetic dysarthria. They include monopitch, re-
duced stress, imprecise consonants, and reduced loudness. One
of the first observed impairments was the imprecise production
of stop consonants such as /p/, /t/, /k/, /b/, /d/, and /g/ [6]. Other
symptoms include reduced duration of vocalic segments and
transitions, and increased voice onset time [6], [7], which may
increase with the disease progression. Several studies have
described speech impairments developed by PD patients in
terms of different dimensions: phonation, articulation, prosody,
and intelligibility [8], [9]. Phonation symptoms are related
to the stability and periodicity of the vocal fold vibration.
They have been analyzed in terms of perturbation measures
such as jitter, shimmer, amplitude perturbation quotient, pitch
perturbation quotient, and non-linear dynamics measures [10],
[11]. Articulation symptoms are related to the modification
of position, stress, and shape of several limbs and muscles to
produce speech. These symptoms have been modeled by vowel
space area, vowel articulation index, formant centralization ra-
tio, diadochokinetic analysis (DDK), and the onset energy [8],
[11], [12]. Prosody deficits are manifested as monotonocity,
monoloudness, and changes in speech rate and pauses. Prosody
analyses are mainly based on pitch and energy contours, and
duration [13].

Besides classical feature extraction methods to model patho-
logical speech, deep learning methods have been successfully
implemented in recent years to evaluate specific phenomena
in speech, including the detection and monitoring of PD [14],
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[15]. These methods have improved the performance of the
models compared to the results obtained with classical ma-
chine learning approaches. For instance, the “2015 Computa-
tional Paralinguistics challengE (ComParE)” [16] had one of
the sub-challenges about the automatic estimation of the neu-
rological state of PD patients according to the MDS-UPDRS-
III score. The winners [14] reported a correlation of 0.65 using
Gaussian processes and deep neural networks (DNN) to pre-
dict the clinical scores. In [17] it was proposed a deep learning
model to assess dysarthric speech. The model aimed to predict
the severity of dysarthria adding an intermediate interpretable
hidden layer that contains four perceptual dimensions: nasality,
vocal quality, articulatory precision, and prosody. The authors
presented an interpretable output highly correlated (Spear-
man’s correlation of up to 0.82) with subjective evaluations
performed by speech and language pathologists. In [18] the
authors modeled the composition of non-modal phonations in
PD. The authors computed phonological posteriors using deep
neural networks. Those phonological posteriors were used to
predict the dysarthria level of 50 PD patients and 50 HC
speakers. In [15] the authors modeled articulation impairments
of PD patients with time-frequency representations (TFR) and
convolutional neural networks (CNNs). The authors classified
PD and HC speakers considering speech recordings in three
languages: Spanish, German, and Czech, and reported accura-
cies from 70% to 89%, depending on the language, indicating
that deep learning methods are promising to assess the speech
of patients suffering from PD.

B. Assessment of PD from handwriting

PD patients show deficits in learning new movements,
particularly in handwriting, patients exhibit impaired peak
acceleration and stroke size, i.e., micrographia [19]. Speed
in handwriting of PD patients is also reduced compared to
age– and gender–matched HC subjects [20]. Impaired force
amplitude and timing have also been observed [21]. In [22]
the authors used a smart pen with integrated acceleration and
pressure sensors to extract statistical and spectral features. The
authors classified PD vs. HC subjects and reported an accuracy
of 89% using an Adaboost classifier. In [23] the authors
considered several machine learning methods to discriminate
between PD patients and HC subjects. The authors evaluated
the in–air and on–surface hand-movements with kinematics
and pressure features, and reported accuracies of up to 85%.

C. Assessment of PD from gait

The most common manifestations of PD appear in gait,
and typically cause disability in patients. Several works have
studied the impact of PD in gait. In [24] the authors classified
specific stages and motor signs of PD using the Embedded
Gait Analysis using Intelligent Technology (eGaIT) system.
The authors identified different stages of the disease according
to the UPDRS scores. In [25] several inertial sensors attached
to the lower and upper limbs were used to predict the UPDRS
scores of 34 PD patients. The authors computed features
related to stance time, length of the stride, and velocity of
each step, and reported a Pearson’s correlation coefficient of

0.60 between the estimated and real UPDRS scores. Recently,
in [26] the authors proposed two novel interpretable features
to assess gait impairments in PD patients: the peak forward
acceleration in the loading phase and peak vertical acceleration
around heel-strike. These two features encode the engagement
in stride initiation and the hardness of the impact at heel-
strike, respectively. The features were correlated with the
UPDRS-III scores of 98 PD patients and the results indicated
that the proposed features are suitable to evaluate the disease
progression and loss of postural agility/stability of patients.

D. Multimodal analysis of PD

Although there are several works considering different bio-
signals to assess motor impairments of PD patients, most of the
studies consider only one modality. Multimodal analyses, i.e.,
considering information from different sensors, have not been
extensively studied [27]. Additionally, the robustness of the
existing signal processing and classification algorithms has not
been enough tested using information from the combination
of multiple sensors. Although many improvements have been
shown in several tasks, there is still an absence of a multimodal
fusion system able to deliver an accurate prediction of the PD
severity [28] and to monitor the disease progression. In [22]
the authors combined information from statistical and spectral
features extracted from handwriting and gait signals. The
fusion of features improved the accuracy of the classification
between PD and HC subjects. In previous studies [29] we also
found that the combination of bio–signals improved the results
regarding the assessment of the motor capabilities of the
patients. The results improved in classification and regression
experiments, where the capability of the model to predict the
disease severity was evaluated.

E. Contribution of this study

On the basis of clinical evidence that shows difficulties of
patients suffering from PD to start and stop movements [7],
i.e., the transitions, and following the idea proposed in [11],
this paper introduces a methodology to model such transitions
in speech, handwriting, and gait signals. The aims of this
work include to evaluate the neurological state of the patients,
to assess specific impairments in the lower/upper limbs and
muscles, and to evaluate the impact of the disease in speech. To
address these aims, onset (to start voluntary movements) and
offset (to stop voluntary movements) transitions are detected
in speech, on-line handwriting, and gait. Speech transitions
are detected when the patients start/stop the vibration of vocal
folds. Transitions in handwriting are detected when the patient
has the pen in the air and puts it on the tablet’s surface,
and gait transitions are detected when the patient starts/stops
walking. These transitions are modeled considering a deep
learning approach based on CNNs. Several experiments are
performed to classify PD vs. HC subjects and to evaluate
the neurological state of patients in several stages of the
disease. Specific motor impairments in lower/upper limbs and
in speech are assessed to classify the patients into three stages
of the disease (initial, intermediate, and severe). We aim also
to find an interpretation of the feature maps obtained from
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the CNNs in each convolutional layer. We obtained state-
of-art results for the classification of PD vs. HC subjects
using multimodal information. As far as we know, this is one
of the first studies that considers multimodal information to
assess motor capabilities of PD patients using deep learning
approaches. Besides the multimodal analysis, the robustness of
the proposed approach is evaluated considering speech signals
in three different languages: Spanish, German, and Czech.
These kinds of multilingual experiments have been performed
before considering classical machine learning techniques [11]
but not with deep learning approaches.

II. DATA

A. Multimodal data

The data contain recordings of speech, handwriting, and
gait collected from 44 (29 female) PD patients and 40 HC
subjects (18 female). Both groups are balanced in gender
[χ2(0.05) = 7.21, d = 38, p = 0.99]. All of the subjects are
Colombian Spanish native speakers. None of the participants
in the HC group has history of symptoms related to PD or any
other kind of movement disorder. The patients were evaluated
by a neurologist expert and labeled according to the MDS-
UPDRS-III scale. All the patients were recorded in ON-state.
Most of them were under pharmacotherapy (unfortunately we
did not have access to the data of the medication doses),
which have shown to reduce the impact of speech impairments
in PD patients [30]. It also improves several gait symptoms,
including those assessed with the proposed approach, e.g.,
gait initiation and freezing of gait [31]. For handwriting, the
dopaminergic medication has shown partial improvement in
the kinematics of the process [20]. The three bio-signals were
captured in the same session during 1 hour, distributed as
follows: 15 minutes for speech, 30 minutes for gait, and 15
minutes for handwriting. Table I shows demographic infor-
mation of the subjects. We divided the total MDS-UPDRS-III
score into three sub-scores to analyze specific impairments in
the lower limbs, upper limbs, and speech. The speech score
ranges from 0 to 4 and corresponds only to one item. The sum
of the scores to asses upper and lower limbs ranges from 0
to 56, corresponding to 14 items of the complete scale. The
division of the items is shown in Table II. Figure 1 shows the
distribution of the scores for the multimodal data.

TABLE I
GENERAL INFORMATION ABOUT MULTIMODAL DATA. µ: AVERAGE, σ:

STANDARD DEVIATION.

PD patients HC subjects
male female male female

Number of subjects 15 29 21 18
Age [years] (µ± σ) 62.5 ± 9.7 57.8 ± 11.1 67.4 ± 12.8 60.5 ± 8.0
Range of age [years] 41–81 25–75 49–84 50–74
Disease duration [years] (µ± σ) 8.0 ± 4.4 12.8 ± 12.4
Range of disease duration [years] 1–15 0–43
MDS-UPDRS-III (µ± σ) 34.6 ± 22.1 36.3 ± 24.2
Range of MDS-UPDRS-III 8–82 9–106

Three classes are defined from each histogram to perform
multi-class experiments to discriminate between initial, inter-
mediate, and severe stages of the disease. For the complete
MDS-UPDRS-III score the ranges per class are defined as
follows: 0 to 25 (initial), 25 to 50 (intermediate), and higher
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Fig. 1. Histograms for the complete MDS-UPDRS-III score and its three
sub-scales for upper limbs, lower limbs, and speech. Patients in initial stage
(green), patients in intermediate stage (blue), and patients in severe stage (red).

than 50 (severe). For the sub-scores related to lower and
upper limbs, the classes are defined as 0 to 10 (initial), 10
to 22 (intermediate), and higher than 22 (severe). Finally for
the speech item, we consider 0 as the initial stage, 1 as the
intermediate stage, and 2 or higher as the severe stage. The
distribution and limits of the scores per class are shown in
Figure 1. Note that one patient could be in different classes
per sub-score depending on which limbs/muscles are more
affected, e.g., the same patient could be in initial stage in
speech, intermediate in upper limbs, and severe in lower limbs.

1) Recorded data: The speech of the participants was
recorded with a sampling frequency of 16 kHz and 16-bit
resolution. The participants pronounced six DDK exercises:
the rapid repetition of the syllables /pa-ta-ka/, /pe-ta-ka/, /pa-
ka-ta/, /pa/, /ta/, and /ka/. Additionally, the corpus contain
read sentences, a read story of 36 words, and a monologue.
Handwriting data consist of on-line drawings captured with
a tablet Wacom cintiq 13-HD1 with a sampling frequency of
180 Hz. The tablet captures six different signals: x-position, y-
position, in-air movement, azimuth, altitude, and pressure. The
subjects performed a total of 14 tasks divided into writing and
drawing tasks (See Table III for details of the performed tasks).
To give an idea of the information that can be obtained from
the on-line handwriting, Figure 2 shows Archimedian spirals
drawn by one HC subject and three patients in different stages
of the disease (low, intermediate, and severe).

Gait signals were captured with the eGaIT system2. The
system consists of a 3D-accelerometer (range ±6g) and a 3D
gyroscope (range ±500◦/s) attached to the lateral heel of the
shoes [24]. Data from both foot were captured with a sampling
rate of 100 Hz and 12-bit resolution. The tasks included 20
meters walking with a stop after 10 meters (2×10 walk), and
40 meters walking with a stop every 10 meters (4×10 walk).

B. Additional speech data

Besides the multimodal data, we consider three additional
speech datasets with recordings in three languages: Spanish,

1Cintiq 13HD Graphic pen tablet for drawing http://www.wacom.com/
en-us/products/pen-displays/cintiq-13-hd

2eGaIT - embedded Gait analysis using Intelligent Technology, http://www.
egait.de/
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TABLE II
DIVISION OF THE MDS-UPDRS-III SCORE INTO SUB-ITEMS FOR SPEECH, LOWER LIMBS, AND UPPER LIMBS.

Item Description Group Item Description Group
3.1 Speech Speech 3.10 Gait Lower limbs
3.3b-c Rigidity in right-left up extremities Upper limbs 3.11 Freezing of gait Lower limbs
3.3d-e Rigidity in right-left low extremities Lower limbs 3.12 Postural stability Lower limbs
3.4 Finger tapping Upper limbs 3.13 Posture Lower limbs
3.5a-b Left-Right hand movements Upper limbs 3.14 Global spontaneity of movement Lower limbs
3.6a-b Pronation-Supination left-right hands Upper limbs 3.15a-b Postural tremor of left-right hands Upper limbs
3.7a-b Left-Right toe tapping Lower limbs 3.16a-b Kinetic tremor of left-right hands Upper limbs
3.8a-b Left-Right leg agility Lower limbs 3.17a-b Rest tremor amplitude left-right up extremities Upper limbs
3.9 Arising from chair Lower limbs 3.17c-d Rest tremor amplitude left-right low extremities Lower limbs

3.18 Constancy of rest tremor Upper limbs

TABLE III
HANDWRITING TASKS PERFORMED BY THE PARTICIPANTS.

Writing tasks Drawing tasks

The name A circle
The ID number A cube
The numbers from 0 to 9 Two rectangles
A template sentence* A house
A free sentence A diamond
The signature The Rey-Osterrieth figure

A spiral following a template
A free spiral

*Template sentence: El abecedario es a b c d e f g h i j k l m n o p q r s t u v w x y z,
which translates: The alphabet is a b c d e f g h i j k l m n o p q r s t u v w x y z

A. B.

C. D.

Low Pressure High Pressure

Fig. 2. Spiral drawn by: A) HC subject (male, 41 years old); B) PD patient in
low state (male, 59 years old, MDS-UPDRS=8); C) PD patient in intermediate
state (female, 59 years old, MDS-UPDRS=33); and D) PD patient in advance
state (female, 73 years old, MDS-UPDRS=64).

German, and Czech with the aim to evaluate the robustness
of deep neural networks when considering speech signals of
PD patients and HC subjects in different languages. Table IV
summarizes the information of each database.

1) Spanish: The corpus considered here is the PC-GITA
database [32]. The data contain speech recordings of 50 PD
(25 women) and 50 HC (25 women) Colombian Spanish
native speakers. All of them are balanced in age [t(0.05) =
−0.2878, p = 0.99]. Twenty of these patients participated also
in the collection of the multimodal data. All of the speakers
pronounced the same speech tasks that were considered in the
multimodal data. All of the patients were recorded in ON state,
i.e., no more than three hours after their morning medication,
and were evaluated by the same neurologist that participated
in the collection of the multimodal data.

TABLE IV
GENERAL INFORMATION ABOUT THE SPEECH DATA IN EACH LANGUAGE.
PD: PARKINSON’S DISEASE. HC: HEALTHY CONTROLS. µ: AVERAGE, σ:

STANDARD DEVIATION.

PD patients HC subjects
male female male female

Spanish

Number of subjects 25 25 25 25
Age [years] (µ± σ) 61.3 ± 11.4 60.7 ± 7.3 60.5 ± 11.6 61.4 ± 7.0
Range of age [years] 33–81 49–75 31–86 49–76
Disease duration [years] (µ± σ) 8.7 ± 5.8 12.6 ± 11.6
Range of disease duration [years] 1–20 1–43
MDS-UPDRS-III (µ± σ) 37.8 ± 22.1 37.6 ± 14.1
Range of MDS-UPDRS-III 6–93 19–71

German

Number of subjects 47 41 44 44
Age [years] (µ± σ) 66.7 ± 9.0 66.1 ± 9.0 63.8 ± 14.0 62.6 ± 13.9
Range of age [years] 44–82 42–84 26–83 28–85
Disease duration [years] (µ± σ) 6.5 ± 5.8 6.8 ± 5.9
Range of disease duration [years] 1–19 1–30
UPDRS (µ± σ) 22.1 ± 10.9 23.3 ± 10.8
Range of UPDRS 5–43 6–55

Czech

Number of subjects 20 0 16 0
Age [years] (µ± σ) 61.0 ± 12.0 – 61.8 ± 13.3 –
Range of age [years] 34–83 – 36–80 –
Disease duration [years] (µ± σ) 2.4 ± 1.7 –
Range of disease duration [years] 0–7 –
UPDRS (µ± σ) 17.9 ± 7.3 –
Range of UPDRS 5–32 –

2) German: The German data contain recordings of 88 PD
patients (41 women) and 88 HC subjects (44 women). The
speakers are balanced in age [t(0.05) = −2, 056, p = 0, 02].
The speakers performed several speech tasks, including the
repetition of /pa-ta-ka/. Further details of this corpus can be
found in [13].

3) Czech: The Czech data are formed with recordings of
20 PD patients and 15 HC subjects. All of them are men. The
patients were newly diagnosed with PD, and none of them
had been medicated before or during the recording session.
The speakers are balanced in age [t(0.05) = 0.31, p = 0.31].
The speakers performed several speech tasks, including the
repetition of /pa-ta-ka/. Further details about this corpus can
be found in [33].

III. DETECTION OF THE START/STOP MOVEMENT

The transition movements in speech, handwriting, and gait
are detected individually upon each bio-signal to model diffi-
culties of the patients to start/stop the movement.

A. Transitions in speech

A transition in speech occurs when the speaker starts or
stops the vocal fold vibration. We detected the transition
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from unvoiced to voiced segments (onset) and from voiced
to unvoiced (offset). Those transitions are produced by the
combination of different sounds during the production of con-
tinuous speech. Offsets and onsets are segmented according
to the presence of the fundamental frequency F 0 using Praat.
Once the borders are detected, 80 ms of the signal are taken to
the left and to the right of each border, forming “chunks” of
signals with 160 ms length. Each chunk is transformed into a
TFR using the short-time Fourier transform (STFT). The TFR
is used as input to the deep learning architecture. Figure 3
shows the difference in the onsets between one HC subject
and three patients in different stages of the disease (low,
intermediate, and severe). Note that the HC speaker clearly
defines the transition, conversely the patients are not able to
produce clean transitions.
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Fig. 3. STFT of an onset produced by: A) a 75 years old female HC
subject; B) a 72 years old female PD patient in low state of the disease
(MDS-UPDRS=19); C) a 73 years old female PD patient in intermediate
state (MDS-UPDRS=38); and D) a 75 years old female PD patient in severe
state (MDS-UPDRS=52). All figures correspond to the syllable /ka/.

B. Transitions in gait

Gait transitions appear when the patient starts (onset) or
stops (offset) walking. These transitions are segmented ac-
cording to the presence of the fundamental frequency of the
signal, which is related to the acceleration of each stride. In
addition, an energy-based threshold is considered to improve
the robustness in the detection of onsets and offsets. Similar to
speech, once a border is detected frames of 3 s are considered
to each side of the border guaranteeing at least 3 quasi-periods
in each “chunk” of signal. The STFT is computed upon the
onsets and offsets and it is used as input for the deep learning
model. Figure 4 shows the difference in the onset produced
by one HC subject and three patients in different stages of
the disease (low, intermediate, and severe). Theses images are
extracted from the z-axis gyroscope signal from the left foot.
The six signals captured with the inertial sensors are used as
inputs to the deep learning architecture.

C. Transitions in handwriting

Transitions in handwriting occur when a starting point of a
stroke is detected (onset), or when the pen takes-off the surface
of the tablet after drawing a stroke (offset). Once each border
is detected, segments of 200 ms are taken to the left and to
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Fig. 4. STFT of a gait onset produced by: A) a 68 years old male HC subject;
B) a 62 years old female PD patient in low state (MDS-UPDRS=19); C) a 65
years old male PD patient in intermediate state (MDS-UPDRS=43); and D) a
57 years old male PD patient in severe state (MDS-UPDRS=58). All figures
correspond to the 2×10 task.

the right of the six signals captured with the tablet: horizontal
movement (x), vertical movement (y), distance between the
surface and the pen (z), azimuth angle, altitude angle, and
pressure of the pen. Figure 5 shows the handwriting onset
of one HC subject and three patients in different stages of the
disease (low, intermediate, and severe). Note that the dynamics
of the z-axis (black lines) is different for PD patients and
HC subjects before starting the stroke (the first 0.5 s of the
figure). Note that the resting tremor in the PD patients is
clearly observed, especially for the PD patient in Figure 5C,
where oscillations around 7 Hz are observed when the pen is
in the air. Complementary material with figures for all PD and
HC subjects can be found on-line3.
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Fig. 5. Handwriting onset produced by: A) a 68 years old male HC subject;
B) a 48 years old male PD patient in low state (MDS-UPDRS=13); C) a 41
years old male PD patient in intermediate state(MDS-UPDRS=27); and D) a
75 years old female PD patient in severe state (MDS-UPDRS=108).

IV. DEEP LEARNING ARCHITECTURES

Architectures based on CNNs are considered as the deep
learning models in this study for several reasons: (1) the data
modalities considered here are in the form of multiple arrays
e.g., 2D speech and gait spectrograms, and 1D handwriting
signals, which makes CNNs the most suitable deep learning
architectures to process such information; (2) we aim to take
advantage of four key aspects of CNNs to process the bio-
signals considered in this study: local connections, shared
weights, pooling, and the use of many layers; (3) CNNs are

3https://github.com/jcvasquezc/images deep transition
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able to detect different local motifs that may appear in the
multiple dimension array due to high correlations between
neighbor values [34]. This concept would allow to detect for
instance spectral bands with more energy density in speech or
gait to discriminate between PD patients and HC subjects.

A. Convolutional neural networks

A CNN is a variant of the standard neural networks. Instead
of using fully connected hidden layers, the CNN introduces a
structure that consists of alternating convolution and pooling
layers. CNNs have been used in several tasks of speech and au-
dio processing like classification of pathological speech [15],
detection of events in audio, speech recognition, and others.
CNNs are designed to process data from multiple arrays,
for instance a color image formed by three channels (RGB),
or two-dimensional arrays that correspond to TFR of audio
signals. CNNs introduce a structure formed by alternating
convolutional filters and pooling layers instead of the fully
connected layers of a DNN. The input of a CNN is a tensor
X ∈ Rp×q×c, where p, q and c can be the number of
vertical pixels, horizontal pixels, and channels of an RGB
image, respectively. The convolution is performed between
the input X and a weight tensor W ∈ Rn×n×d producing a
hidden representation H ∈ R(p−n+1)×(q−n+1)×d that contains
the extracted features from the input. n is the order of the
convolutional filter and d is the number of feature maps in the
convolutional layer. After the convolution, a pooling layer is
applied to remove variability that may appear due to external
factors like the speaking style or channel distortion. The last
layer of a CNN corresponds to a fully connected layer with
h hidden units followed by a sigmoid activation function to
make the final decision of whether the TFR corresponds to
a PD patient or a HC speaker. In this study, several CNNs
are used to extract information from speech, handwriting and
gait. For the speech and gait signals, two-dimensional (2D)
CNNs are trained to process the TFR created with the STFT
of the transitions, as in previous studies [15]. As the speech
recordings are monophonic, in this case only one channel is
considered in the input of the CNNs. For gait analysis the
input consists of c = 12 channels that contain signals of the
accelerometer and gyroscope in the x, y, and z-axes of the
left and right foot. For on-line handwriting, we consider a 1D
CNN with c = 16 channels that include information of the
transition from in-air to on-surface movement, or vice-versa.
In this case the inputs to the CNN consist of the raw data
of eight signals: x–position, y–position, z–position, pressure
of the pen, azimuth angle, altitude angle, on-surface trajectory
(r), and angle of the trajectory (θ). All of them are captured in
the transitions. The derivatives of these data are also included
to complete the 16 channels. Table V summarizes the inputs
received by the CNN for each bio-signal. A STFT with
128 points is computed for speech and gait, forming the 65
frequency indexes in the input. Frames of 16 ms with a time-
shift of 4 ms are considered for the STFT in the speech signals,
forming a total of 40 frames. The frame size in gait is 200 ms
with a time-shift of 100 ms, forming 60 frames. Note that
the number of inputs for gait is much larger than the inputs

for speech and handwriting, which gives an idea about the
complexity of the CNNs for each bio-signal.

TABLE V
NUMBER OF INPUTS OF THE CNNS FOR SPEECH, GAIT, AND

HANDWRITING SIGNALS. c: NUMBER OF CHANNELS.

Input signal Convolution Input size c Num. inputs

Speech 2D 40 ×65 1 2600
Gait 2D 60 ×65 12 46800
Handwriting 1D 180 ×1 16 2880

Figure 6 shows the CNN architecture used in this study. Fig-
ure 6A depicts a 2D-CNN with two convolutional and max–
pooling layers followed by a fully connected layer that receives
the TFRs as input from speech or gait. Figure 6B illustrates a
1D-CNN with 2 convolutional and pooling layers to process
the raw information of the transitions in handwriting.
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Fig. 6. CNN architectures implemented in this study.

The CNNs are trained using the stochastic gradient descent
(SGD) algorithm. The cross–entropy between training labels
y and the model predictions ŷ is used as the loss function for
classification. This cost function is related to the negative log-
likelihood of the model. The root mean square propagation is
considered as a mechanism to adapt the learning rate in each
iteration t for each parameter of the network. The method
divides the learning rate η by an exponentially decaying
average of squared gradients using Equations 1 and 2 [35],
where g′ indicates the derivative of the parameters Θ in the
t-th iteration.

G(Θ)(t) = 0.9G(Θ)(t−1) + 0.1g′(Θ(t))2 (1)

η(t) =
η(t−1)√
G(Θ)(t)

(2)

Additionally, rectifier linear (ReLU) activation functions are
used in the convolutional layers, and dropout is included in
the training stage to avoid over–fitting. The architecture of the
CNN implemented in this study consists of four convolutional
layers, two max-pooling layers, dropout to regularize the
weights, and two fully connected hidden layers followed by
the output layer to make the final decision using a sigmoid
activation function. Details of this architecture are summarized
in Table VI.
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TABLE VI
CNN ARCHITECTURE FOR MULTIMODAL ANALYSIS OF PD.

Input (Speech; handwriting; gait)

Convolutional layer 1 (ReLU unit)
Convolutional layer 2 (ReLU unit)
Max-pooling layer 1
Dropout 1
Convolutional layer 3 (ReLU unit)
Convolutional layer 4 (ReLU unit)
Max-pooling layer 2
Dropout 2
Fully connected hidden layer (ReLU unit)
Fully connected hidden layer (ReLU unit)

Output layer (Sigmoid unit)

B. Fusion

Individual CNNs are trained for each modality, afterwards
multimodal assessment is performed by combining the three
bio-signals in 3 steps: (1) the feature maps from the last hidden
layer of each CNN are averaged across the different tasks and
transitions of a given subject. The aim is to form one feature
vector with information of all tasks per subject and per bio-
signal; (2) the embeddings obtained from the three bio-signals
are concatenated to form a multimodal vector per subject; and
(3) the created feature vectors are used to classify PD patients
and HC subjects using a radial basis SVM.

C. Baseline

Conventional feature sets and traditional machine learning
methods from related studies are considered to compute the
baseline. The speech signals are modeled with the 88 features
of the extended Geneva minimalistic acoustic parameter set
(EGeMAPS) [36], which are extracted using the OpenSMILE
toolkit [37]. Handwriting strokes are modeled with kinematics
features based on the trajectory, velocity, and pressure of the
pen, which were used in previous studies [23], [29]. Gait
features include kinematics measures based on the length
of the stride, velocity of each step, swing time, and stance
time [24], [29]. All features are classified using a radial
basis SVM. The fusion baseline is based on the early fusion
approach with features of the three bio-signals.

D. Validation

The experiments are validated with the following strategy:
80% of the data are used for training, 10% are used to optimize
the hyper-parameters, i.e., development set, and the remaining
10% of the data are used for test. The process is repeated 10
times with different partitions of the test set to guarantee that
every participant is only tested once.

The hyper-parameter tuning is performed with a Bayesian
optimization approach [38] due to the large number of hyper-
parameters that needs to be optimized. Bayesian optimization
is one of the sequential model-based optimization (SMBO)
algorithms. The hyper-parameter tuning is an optimization
problem, where we find the hyper-parameters that maximize
the performance of the model on the development set. SMBO
algorithms use previous observations of a loss function f , to

determine the next (optimal) point to sample f . The Bayesian
optimization assumes that the loss function f can be described
by a Gaussian Process (GP). The GP induces a posterior dis-
tribution over the loss function f that is analytically tractable,
which allows us to update f , after we have computed the loss
for a new set of hyper-parameters. The Expected Improvement
(EI) is used as the optimization function for the Bayesian
optimization algorithm. The EI is the expected probability that
a new set of hyper-parameters will improve the current best ob-
servation. EI is defined as EI(β) = E[max{0, f(β)− f(β̂)}],
where β is the current set of hyper-parameters and β̂ is the
current optimal set of hyper-parameters. EI will give us the
point that in expectation improves the most upon f . The
Bayesian optimization algorithm can be summarized according
to the following steps:

1) Given observed values of f(β), update the posterior
expectation of f using the GP model.

2) Find βnew that maximizes EI(β).
3) Compute the loss function for f(βnew).
We use the accuracy in the development set as the optimiza-

tion function f(β), and the hyper-parameters set β is formed
with the filter size of each convolutional layer of the CNN
(ni), the number of feature maps in each convolutional layer
(di), the number of hidden units in the fully connected layers
h1 and h2, the initial learning rate η, and the probability of
dropout. The range of the hyper-parameters to be optimized
is shown in Table VII. In addition a batch-size of 64 samples
and a total of 150 epochs are considered.

TABLE VII
RANGE OF THE HYPER-PARAMETERS USED TO TRAIN THE CNNS.

Hyper-parameter Values

Filter size convolutional layers {3, 5, 7}
Depth of convolutional layers {4, 8, 16, 32, 64}
Hidden units in fully connected layers {16, 32, 64, 128}
Learning rate {0.0001, 0.0005, 0.001}
Probability of dropout {0.1, 0.2 · · · 0.9}

V. EXPERIMENTS AND RESULTS

A. Classification of PD patients vs. HC subjects considering
multimodal data

The results considering speech, handwriting, and gait are
shown in Table VIII, which includes accuracy in the de-
velopment and test sets, area under the receiving operating
characteristic curve (AUC) and number of parameters in the
CNN. The best results are obtained with the fusion of the
three bio-signals (accuracy of 97.6%). This result exceeds
those obtained with each bio-signal separately and with early-
fusion (the baseline). Results obtained with traditional features
extracted per bio-signal are also included in Table VIII. Note
that the results obtained with the proposed approach in speech
and gait exceed those obtained in the corresponding baselines
in 17.8% and 17.3%, respectively.

Table VIII shows the reduction of the accuracies obtained in
development and test. In speech the decrease ranges between
6.7 and 15.6%. The results in gait are relatively more stable
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TABLE VIII
MULTIMODAL CLASSIFICATION OF PD PATIENTS AND HC SUBJECTS.

ACC. TEST: ACCURACY IN THE TEST SET, ACC. DEV.: ACCURACY IN THE
DEVELOPMENT SET, AUC: AREA UNDER THE ROC CURVE, N.: NUMBER

OF PARAMETERS IN THE CNN.

Bio-signal Acc. Test Acc. Dev. AUC N.

Speech baseline 74.5±1.7 77.0±2.4 0.841
Speech onset 92.3±12.3 99.4±0.7 0.963 140055
Speech offset 83.5±6.6 99.1±0.7 0.925 135389
Gait baseline 63.0±8.9 66.0±3.1 0.725
Gait onset 80.3±10.3 83.3±8.9 0.878 326977
Gait offset 78.8±16.0 87.8±5.1 0.901 1231016
Handwriting baseline 67.1±4.2 67.7±1.7 0.725
Handwriting onset 60.4±3.5 95.7±4.0 0.634 142517
Handwriting offset 66.5±5.5 98.1±1.7 0.699 255560
Fusion baseline 89.0±7.8 87.8±3.1 0.944
Fusion onset 97.6±2.9 98.8±0.6 0.988 609549
Fusion offset 84.3±5.8 86.0±1.4 0.890 1621965

with a decrease ranging from 0.8 to 9.0%. Handwriting
seems to be the least robust for generalization purposes. The
difference in the accuracy obtained in development and test
ranges between 9.5 and 35.3%. It is interesting to note that the
accuracies in development obtained with gait are lower than
those with speech and handwriting. This fact can be explained
due to the difference in the number of transitions, which limits
the amount of information considered to generate the proposed
model. In speech and handwriting, there are several (more than
5) transitions, while in gait there is only one transition in the
case of the 2×10 task, and three in the case of the 4×10 task.
Further experiments, considering tasks with more transitions,
e.g., heel-toe taping, are required to validate this hypothesis.
The only relatively high difference between the results for
onset and offset is observed in speech. Such a difference
could be likely explained because the DDK tasks, e.g., rapid
repetition of the syllables /pa-ta-ka/, are mainly designed to
assess the capability of speakers to perform onsets [39]. This
behavior was also observed in previous experiments [15].
Finally, Table VIII includes the number of required parameters
in the CNNs per modality. Note that gait is the modality that
requires the largest number. This is expected because gait
signals have the largest number of inputs, as it was shown in
Table V. In order to show the results in a more compact way,
Figure 7 shows the ROC curves for the best results of each
modality. It can be observed that the performance in speech
and gait exceeds the results obtained with handwriting.

B. Classification of PD patients vs. HC subjects considering
speech signals in different languages

The generalization capability of the proposed approach is
tested in several cross-language experiments. In this case
only the DDK exercises of the Spanish, German, and Czech
datasets are considered. The speech recordings of the three
languages were re-sampled to 16kHz. CNNs were trained
with features extracted from onsets/offsets of recordings of
one language and tested upon recordings of the other two
languages separately. Additionally, the improvement of the
accuracy is analyzed when moving portions of the data in the
target language to the data in the training set. The recordings
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Fig. 7. ROC curves for the classification of PD patients vs. HC subjects using
speech, handwriting, and gait.

of the target language are included in the test set and excluded
from the training set to avoid bias. The process was repeated
incrementally from 0% to 90% in steps of 10%. The results
are depicted in Figure 8. Each point corresponds to the result
of the aforementioned process.

Onset: test German
Offset: test German
Onset: test Czech
Offset: test Czech

Onset: test Spanish
Offset: test Spanish
Onset: test Czech
Offset: test Czech

Onset: test German
Offset: test German
Onset: test Spanish
Offset: test Spanish

% of target language in train set % of target language in train set % of target language in train set

Fig. 8. Classification of PD and HC subjects in the cross-language experi-
ments. A) Train with Spanish and test on German and Czech; B) Train with
German and test on Spanish and Czech; and C) Train with Czech and test on
German and Spanish.

The results obtained with the onsets are in most of the
cases slightly higher than those obtained with the offsets. This
behavior supports what we have observed in the experiments
with multimodal data. Although the proposed approach is
based on DDK exercises, which in theory are language inde-
pendent, note the influence of language when no data from
the target language is added to the training set, especially
when the test is in the German data (Figures 8A and 8C).
The language influence is reduced when moving portions of
the data in the target language to the data in the training set,
especially when the system is trained with Spanish utterances
and tested with German recordings (Figure 8A), and when
the train set is Czech and the test set is German (Figure 8C).
In general, the results indicate that the proposed approach is
robust against different languages, and that the DDK tasks
seem to be appropriate to assess motor speech deficits in
different languages. Further experiments with sentences, read
texts, and spontaneous speech signals are required to address
other research questions like the influence of the language in
the disease manifestation and progression [40].

C. Analysis of hidden layers of CNNs

Figure 9 shows the output of the second and fourth convo-
lutional layers of the CNN trained with the onsets of the DDK
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tasks. Four feature maps are computed for the second layer,
and eight for the fourth. Note that the border in the transition
is more evident in the hidden layers than in the input, which
may be explained due to the max pooling layer that removes
non-relevant information from the spectrograms.
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Fig. 9. Output of the CNN for the convolutional layers trained with speech
onsets extracted from the DDK tasks. A) Input of the CNN; B) Outputs of
the second layer; and C) Outputs of the fourth layer.

The output of the hidden layer for the gait signals is shown
in Figure 10. The 12 input channels depicted in Figure 10A are
transformed into the eight feature maps shown in Figure 10C
in the fourth convolutional layer, forming embeddings that
contain the most suitable information to classify PD patients
and HC subjects. Some of the outputs of the hidden layers
of the CNN are “turned-off”, due to the regularization effect
of the dropout, indicating that not all of the feature maps are
necessary to make the final decision.

A

0 2 4 6

20

40

Fr
e
q

u
e
n
cy

 (
H

z)

accX LF

0 2 4 6

accY LF

0 2 4 6

accZ LF

0 2 4 6

gyrX LF

0 2 4 6

gyrY LF

0 2 4 6

gyrZ LF

0 2 4 6

Time (s)

20

40

Fr
e
q

u
e
n
cy

 (
H

z)

accX RF

0 2 4 6

Time (s)

accY RF

0 2 4 6

Time (s)

accZ RF

0 2 4 6

Time (s)

gyrX RF

0 2 4 6

Time (s)

gyrY RF

0 2 4 6

Time (s)

gyrZ RF

B

C

Fig. 10. Output of the CNN for each convolutional layer trained with onsets
from gait. A) 12 input channels of the CNN; B) Outputs of the second layer;
and C) Outputs of the fourth layer. acc: signals from the accelerometer, gyr:
signals from the gysrocope, RF: right foot, LF: left foot.

The statistical difference of the computed feature maps
between HC subjects and PD patients for speech, gait, and
handwriting is evaluated with Kruskal-Wallis H-tests. The aim
is to find which are the most discriminating feature maps
and hidden layers to classify PD patients vs. HC subjects.

This knowledge can help in finding possible interpretations
about local features learned by the CNN in each layer, and in
understanding how those features are related to the presence
of the disease. The Kruskal-Wallis H-test is a non-parametric
method for testing whether samples are originated from the
same distribution. In this experiment it is used to evaluate
the null hypothesis that the medians of the population of the
tested groups are equal. The results are shown in Table IX.
The second convolutional layer from speech rejects the null
hypothesis for almost all of the feature maps (p-val<0.05).
Some of the outputs of the fourth layer for speech signals
show also significant differences between the PD and HC
subjects. For gait signals, non of the feature maps of the hidden
layers provide significant difference between the PD and HC
subjects. This fact could be explained by two reasons: (1)
the number of transitions in gait is much smaller than those
observed in handwriting or speech, and (2) the number of
inputs in the CNN for gait is much higher than those in speech
and handwriting, as it was observed in Table V. These results
also indicate that the fully connected hidden layers after the
convolutional layers are those that provide the information to
discriminate between PD and HC subjects. For handwriting,
some of the features from the fourth layer have significant
difference between PD and HC subjects, which supports the
convenience of using those features learned by the CNN in
that layer for the classification problem.

TABLE IX
KRUSKAL-WALLIS TEST TO EVALUATE THE STATISTICAL DIFFERENCE

BETWEEN HC SUBJECTS AND PD PATIENTS IN THE FEATURES LEARNED
BY THE CNNS FOR SPEECH, GAIT, AND HANDWRITING IN THE

CONVOLUTIONAL LAYERS 2 AND 4.

Convolutional layer 2 Convolutional layer 4
Speech Gait Handwriting Speech Gait Handwriting
p-val p-val p-val p-val p-val p-val

feature map 1 0.03 0.14 0.23 <0.05 0.71 0.39
feature map 2 <0.05 0.96 0.79 <0.05 0.52 0.33
feature map 3 0.01 0.32 0.71 0.31 0.39 0.61
feature map 4 0.06 0.86 0.99 0.66 0.29 0.47
feature map 5 0.77 0.93 0.48 0.01
feature map 6 0.02 <0.05 0.75 0.62
feature map 7 0.49 0.08 0.84 0.98
feature map 8 0.82 <0.05 0.73 0.04

D. Assessment of the neurological state

Two experiments are performed to assess the neurological
state of the patients. The first one aims to classify the patients
into different stages of the disease according to the complete
MDS-UPDRS-III scale. A total of four classes are defined
according to the score assigned by the neurologist. This experi-
ment is performed with each modality separately and with their
combination. The results are shown in terms of the confusion
matrices in Table X for speech, Table XI for handwriting,
Table XII for gait, and Table XIII for the combination. The
unweighted average recall (UAR) is computed as the global
performance score. It is used to avoid bias due to the unbalance
in the groups and it can be interpreted as an average ratio of
the true positives per class.

The second experiment aims to classify the patients consid-
ering only those items of the MDS-UPDRS-III scale that are
intended to evaluate those specific limbs and muscles of the
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body that are involved in gait, handwriting, and speech. Only
those items of the total MDS-UPDRS-III scale that evaluate
the motor capability of the lower limbs, upper limbs, and
speech are considered to assess gait, handwriting and speech
deficits, respectively. The distribution of these three groups in
the total scale is shown in Table II. The patients are grouped
into three classes according to the specific sub-scales and
they are classified separately. The division of the sub-scales
is summarized in Figure 1. The results of the experiment are
also shown in the confusion matrices of Table X for speech,
Table XI for handwriting, and Table XII for gait.

TABLE X
CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES

OF THE DISEASE USING SPEECH SIGNALS. PDx : PATIENTS IN LOW,
INTERMEDIATE, AND SEVERE STATE ACCORDING TO THE

MDS-UPDRS-III SCORE. RESULTS IN % AND ABSOLUTE VALUES (IN
PARENTHESIS)

MDS-UPDRS-III score

Speech onset UAR=37.8% Speech offset UAR=37.2%
HC PD1 PD2 PD3 HC PD1 PD2 PD3

HC 84.6 (33) 5.1 (2) 10.3 (4) 0.0 (0) 82.0 (32) 5.1 (2) 10.3 (4) 2.6 (1)
PD1 64.3 (9) 0.0 (0) 35.7 (5) 0.0 (0) 78.6 (11) 0.0 (0) 21.4 (3) 0.0 (0)
PD2 55.6 (10) 11.1 (2) 33.3 (6) 0.0 (0) 66.7 (12) 0.0 (0) 33.3 (6) 0.0 (0)
PD3 16.7 (1) 16.7 (1) 33.3 (2) 33.3 (2) 16.7 (1) 0.0 (0) 50.0 (3) 33.3 (2)

MDS-UPDRS-III sub-score (speech item)

Speech onset UAR=54.9% Speech offset UAR=45.4%
HC PD1 PD2 PD3 HC PD1 PD2 PD3

HC 92.3 (36) 0.0 (0) 5.1 (2) 2.6 (1) 94.9 (37) 0.0 (0) 0.0 (0) 5.1 (2)
PD1 10.0 (1) 50.0 (5) 20.0 (2) 20.0 (2) 10.0 (1) 20.0 (2) 50.0 (5) 20.0 (2)
PD2 43.8 (7) 6.2 (1) 31.2 (5) 18.8 (3) 12.5 (2) 6.3 (1) 43.7 (7) 37.5 (6)
PD3 0.0 (0) 23.0 (3) 30.8 (4) 46.2 (6) 15.4 (2) 15.4 (2) 46.2 (6) 23.0 (3)

TABLE XI
CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES

OF THE DISEASE USING HANDWRITING SIGNALS. PDx : PATIENTS IN LOW,
INTERMEDIATE, AND SEVERE STATE ACCORDING TO THE

MDS-UPDRS-III SCORE. RESULTS IN % AND ABSOLUTE VALUES (IN
PARENTHESIS)

MDS-UPDRS-III score

Handwriting onset UAR=54.9% Handwriting offset UAR=51.9%
HC PD1 PD2 PD3 HC PD1 PD2 PD3

HC 94.9 (37) 2.6 (1) 0.0 (0) 2.6 (1) 97.4 (38) 2.6 (1) 0.0 (0) 0.0 (0)
PD1 35.7 (5) 35.7 (5) 21.4 (3) 7.1 (1) 35.7 (5) 21.4 (3) 28.6 (4) 14.3 (2)
PD2 22.2 (4) 16.7 (3) 55.6 (10) 5.6 (1) 11.1 (2) 16.7 (3) 55.6 (10) 16.7 (3)
PD3 33.3 (2) 16.7 (1) 16.7 (1) 33.3 (2) 0.0 (0) 16.7 (1) 50.0 (3) 33.3 (2)

MDS-UPDRS-III sub-score (upper limbs)

Handwriting onset UAR=50.9% Handwriting offset UAR=49.7%
HC PD1 PD2 PD3 HC PD1 PD2 PD3

HC 94.9 (37) 2.6 (1) 2.6 (1) 0.0 (0) 92.3 (36) 5.1 (2) 2.6 (1) 0.0 (0)
PD1 30.0 (3) 20.0 (2) 50.0 (5) 0.0 (0) 40.0 (4) 10.0 (1) 40.0 (4) 10.0 (1)
PD2 14.3 (3) 4.8 (1) 76.2 (16) 4.8 (1) 19.0 (4) 4.8 (1) 71.4 (15) 4.8 (1)
PD3 0.0 (0) 0.0 (0) 87.5 (7) 12.5 (1) 0.0 (0) 0.0 (0) 75.0 (6) 25.0 (2)

The classification according to the total MDS-UPDRS-III
score indicates that the highest UAR values are obtained
with handwriting onsets and offsets, which can be explained
because the high number of transitions that appear during
the writing process, thus it can be expected to find more
information in this modality than in the other two. The lowest
UAR values are obtained with the speech signals, which was
expected considering that the MDS-UPDRS-III scale only
considers one item related to speech (see Table II), thus
to classify groups according to the complete MDS-UPDRS-
III scale considering only speech signals is a very difficult
(and to some extent unfair) problem. The confusion matrices
indicate that HC subjects are accurately classified compared
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Fig. 11. Examples of drawings and onset transitions detected for miss-
classified subjects: A) PD patient in low state (PD1) detected as HC subject;
B) HC classified as PD patient in low state (PD1); C) Patient in severe state
(PD3) classified as HC; and D) Patient in severe state (PD3) classified as PD
patient in intermediate state (PD2).

TABLE XII
CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES

OF THE DISEASE USING GAIT SIGNALS. PDx : PATIENTS IN LOW,
INTERMEDIATE, AND SEVERE STATE ACCORDING TO THE

MDS-UPDRS-III SCORE. RESULTS IN % AND ABSOLUTE VALUES (IN
PARENTHESIS)

MDS-UPDRS-III score

Gait onset UAR=48.6% Gait offset UAR=50.9%
HC PD1 PD2 PD3 HC PD1 PD2 PD3

HC 97.4 (38) 0.0 (0) 2.6 (1) 0.0 (0) 94.9 (37) 0.0 (0) 5.1 (2) 0.0 (0)
PD1 35.7 (5) 35.7 (5) 28.6 (4) 0.0 (0) 28.6 (4) 14.3 (2) 57.1 (8) 0.0 (0)
PD2 33.3 (6) 16.7 (3) 44.4 (8) 5.6 (1) 22.2 (4) 11.1 (2) 61.1 (11) 5.6 (1)
PD3 33.3 (2) 16.7 (1) 33.3 (2) 16.7 (1) 16.7 (1) 0.0 (0) 50.0 (3) 33.3 (2)

MDS-UPDRS-III sub-score (lower limbs)

Gait onset UAR=46.8% Gait offset UAR=37.6%
HC PD1 PD2 PD3 HC PD1 PD2 PD3

HC 97.4 (38) 2.6 (1) 0.0 (0) 0.0 (0) 89.7 (35) 2.6 (1) 2.6 (1) 5.1 (2)
PD1 75.0 (12) 6.3 (1) 12.5 (2) 6.3 (1) 50.0 (8) 12.5 (2) 31.3 (5) 6.3 (1)
PD2 18.8 (3) 12.5 (2) 50.0 (8) 18.8 (3) 50.0 (8) 12.5 (2) 31.3 (5) 6.3 (1)
PD3 16.7 (1) 0.0 (0) 50.0 (3) 33.3 (2) 33.3 (2) 16.7 (1) 33.3 (2) 16.7 (1)

to patients in different stages, i.e., the proposed approach has
a high specificity. In addition, patients in the first stage of
the disease (PD1) are miss-classified mainly as HC (some of
the cases are mis-classified as PD2), which is consistent with
the disease progression. Patients in a severe stage are more
commonly miss-classified as patients in the intermediate than
patients in the first stage or HC subjects. Figure 11 shows
some examples of drawings and transitions of miss-classified
handwritings. The house in Figure 11B was drawn by a miss-
classified HC subject who used less uniform strokes than those
used by some patients. This can occur due to external factors
such as education level, less contact with technology, or aging
(the subject was 75 years old at the moment of the recording
session). Conversely, drawings of PD patients detected as HC
subjects (Figures 11A, and 11C) show relatively stable strokes,
compared to those of the PD patient in Figure 11D, who is in
severe state but was classified in intermediate state.

Table XIII indicates that the fusion of the three bio-signals
improves the results in the classification of PD patients in
different disease stages. Note that the fusion is highly accurate
to detect HC subjects (100% with onset). Most of the miss-
classified PD patients in low and severe stages are detected
as PD patients in intermediate state. Note also that patients
in severe stage are always miss-classified. We think that these
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TABLE XIII
CLASSIFICATION OF HC SUBJECTS AND PD PATIENTS IN THREE STAGES
OF THE DISEASE USING THE COMBINATION OF SPEECH, HANDWRITING,

AND GAIT SIGNALS. PDx : PATIENTS IN LOW, INTERMEDIATE, AND
SEVERE STATE ACCORDING TO THE MDS-UPDRS-III SCORE.

MDS-UPDRS-III score

onset UAR=55.6% offset UAR=45.2%
HC PD1 PD2 PD3 HC PD1 PD2 PD3

HC 100.0 (39) 0.0 (0) 0.0 (0) 0.0 (0) 97.4 (38) 0.0 (0) 2.6 (1) 0.0 (1)
PD1 0.0 (0) 50.0 (7) 42.9 (6) 7.1 (1) 21.4 (3) 0.0 (0) 78.6 (11) 0.0 (0)
PD2 0.0 (0) 22.2 (4) 72.2 (13) 5.6 (1) 11.1 (2) 5.6 (1) 83.3 (15) 0.0 (0)
PD3 0.0 (0) 66.7 (4) 33.3 (2) 0.0 (0) 16.7 (1) 0.0 (0) 83.3 (5) 0.0 (0)

results should improve with more data from patients in severe
stage (we only had 6 PD patients in that stage). Regarding
the classification of patients according to specific items of
the scale for speech, upper limbs, and lower limbs, high
UARs are obtained with handwriting and speech signals. The
results obtained with speech signals to predict the speech
item of the neurological scale are higher than those obtained
when considering the total score. Confusion matrices show
consistent results when predicting the total MDS-UPDRS-III
scores. HC subjects are more accurately classified than patients
in several stages of the disease. Patients in initial stages
are commonly miss-classified as HC subjects and patients in
severe stages are miss-classified in the intermediate stage.

VI. CONCLUSION

This paper presents a multimodal analysis of motor abilities
of PD patients considering deep learning architectures based
on TFRs and CNNs such that integrate information from
speech, handwriting and gait signals. The proposed method
models the difficulty of patients to start/stop the movement of
muscles in lower and upper limbs, and in speech. Three main
experiments were performed: (1) classification of PD patients
and HC subjects, (2) classification of PD patients in different
stages of the disease according to the total MDS-UPDS-III
score, and (3) classification of PD patients in different stages
of the disease according to specific impairments in lower
and upper limbs, and in speech, considering sub-scores of
the MDS-UPDRS-III scale. The experiments suggest that the
proposed approach is highly accurate to classify PD patients
and HC subjects using information of speech, handwriting,
and gait separately. The results obtained with the proposed
approach are higher than those obtained with traditional ma-
chine learning techniques. Additionally, the accuracy of the
system improved up to 97.3% when information from the three
bio-signals is merged. The classification of different stages of
the disease shows that speech and handwriting are the most
accurate. This fact can be explained because the transitions
modeled in this study appear less frequently in gait than in
speech or handwriting. It is necessary to evaluate other tasks
with more transitions to obtain more accurate results. For
instance, transitions that appear in the step cycle phase during
the heel strike could show other gait impairments and increase
the data to train more robust deep learning models. In order to
do this, a more robust strategy to segment each step separately
is needed to assess the onset/offset per step [41].

The models trained in this study show to be useful to
characterize speech impairments of patients in three different

languages: Spanish, German and Czech. This is validated only
rapid repetitions of the syllables /pa-ta-ka/. Further experi-
ments may be performed with more speech tasks to validate
the language independence of the proposed approach.

The feature maps learned by the CNN trained with the
multimodal data allow to interpret the hidden representations
of the neural network. The first convolutional layers of the
CNN trained with TFRs of speech show significant differences
between PD patients and HC subjects. Similar results are ob-
tained with the last layer of the CNN trained with handwriting.

The proposed approach seems to be promising to classify
PD patients in different stages of the disease. The fusion of
the three bio-signals is the most accurate approach to classify
PD patients in different stages of the disease. The miss-
classification errors appear mainly with patients in the initial
stage which are miss-classified as HC subjects. Similarly,
most of the patients in advanced stages are miss-classified as
patients in intermediate stages of the disease, which indicates
that the proposed approach makes errors that to some extent
coincide with the natural progress of the disease.

CNNs seem to be suitable to model the difficulties of
PD patients to start/stop the movements of different limbs,
which allows the accurate classification of PD patients and
HC subjects. In addition, the proposed architectures seem to
be promising to classify different stages of the disease. Other
architectures such as those based on recurrent neural networks
and long short-term memory units should be considered in
future works to model time-dependences of consecutive tran-
sitions and the co-articulation phenomena in speech. Recent
advances in deep learning including the densely connected net-
works, or time-delay neural networks could be implemented as
additional deep learning–based feature extraction approaches
to model different bio-signals collected from PD patients.

The proposed approach can be extended to other appli-
cations also useful in the clinics. For instance it could be
potentially used to detect prodromal stages of the disease,
which would benefit the development of future neuroprotective
therapies [42]. There is supporting evidence showing that the
detection of prodromal stages of PD is possible from speech
[9] and gait [43]. The main difficulty of these kinds of studies
is to find the patients because it is necessary to recruit them
before the disease to appear. Once the target group is found,
it is required to start their monitoring over time in order
to understand which are the patterns that become abnormal
when early signs of the disease appear. Our research team
in Medellı́n (Colombia) is currently collecting data from pre-
clinical genetic subjects (people who have a gene mutation
responsible for producing PD but with no clinical signs of
the disease). We hope to find promising results in the near
future. Another potential application for the proposed approach
could be the discrimination between PD and other neurological
disorders with similar symptoms, such as Huntington’s disease
or essential tremor. There is also evidence for this application
in the literature, especially for speech [44] and gait [45].
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