Conference paper Open Access

Motion Analysis of Parkinson Diseased Patients using a Video Game Approach

Athina Grammatikopoulou; Kosmas Dimitropoulos; Sevasti Bostantjopoulou; Zoe Katsarou; Nikos Grammalidis


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3686049">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3686049</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3686049"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Athina Grammatikopoulou</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Information Technologies Institute Centre for Research and Technology Hellas</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Kosmas Dimitropoulos</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Information Technologies Institute Centre for Research and Technology Hellas</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sevasti Bostantjopoulou</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Medical school, Aristotle University of Thessaloniki, Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Zoe Katsarou</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Medical school, Aristotle University of Thessaloniki, Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Nikos Grammalidis</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Information Technologies Institute Centre for Research and Technology Hellas</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Motion Analysis of Parkinson Diseased Patients using a Video Game Approach</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/690494/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-06-05</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3686049"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3686049</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3686048"/>
    <dct:description>&lt;p&gt;Parkinson&amp;rsquo;s disease (PD) is a progressive neurological disorder and the second most common age-related neurodegenerative disease after Alzheimer&amp;#39;s disease. The primary symptoms of the disease are associated with the loss of motor skills affecting patients&amp;rsquo; movement and coordination and disrupting their daily life. Unfortunately, such motor symptoms cannot be fully relieved by therapeutic options. On the other hand, studies have shown that regular training and exercising can prove neuroprotective in PD patients helping them maintain independent longer. Based on recent studies stating that computer-based physical therapy games can be used as an option for facilitating PD rehabilitation exercise programs, we present the development of a body motion based videogame, using the Kinect sensor, targeted for PD patients. We tested twelve patients with advanced forms of PD motor symptoms (UPDRS motor score&amp;gt;20) and six initial stage PD patients (UPDRS motor score&amp;lt;20). All participants underwent an (UPDRS) motor skills pretest and afterwards performed three training sessions.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3686049">https://doi.org/10.5281/zenodo.3686049</dcat:accessURL>
        <dcat:byteSize>483761</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3686049/files/096.pdf">https://zenodo.org/record/3686049/files/096.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/690494/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">690494</dct:identifier>
    <dct:title>Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
55
132
views
downloads
All versions This version
Views 5555
Downloads 132132
Data volume 63.9 MB63.9 MB
Unique views 5252
Unique downloads 123123

Share

Cite as