Preprint of:
M. J. Fernandez, P. J. Sanchez-Cuevas, G. Heredia and A. Ollero, "Securing UAV communications using ROS with custom ECIES-based method,"
2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), Cranfield, United Kingdom, 2019, pp. 237-246.

Securing UAV communications using ROS with custom ECIES-based method

Manuel J. Fernandez, Pedro J. Sanchez-Cuevas, Guillermo Heredia, and Anibal Ollero
GRVC Robotics Lab, University of Seville
Seville, Spain
manfer@ieee.org, psanchezl6@us.es, guiller@us.es, aollero@us.es

Abstract—This paper is about an application of a method
based on the ECIES (Elliptic Curve Integrated Encryption
Scheme) to improve the security against malicious attacks of
the UAVs (Unmanned Aerial Vehicles) communications system.
This system is focused on improving the security conditions in
extreme situations and preventing the aircraft for man-made
incidents and cyber attacks. The paper briefly describes the
different attacks that can affect to the operation of UAVs and
the security methods that, nowadays, are used to guarantee the
security during the operations. Moreover, it presents a solution
to a strong vulnerability detected in the classical scheme used
in UAV. This scheme uses ROS (Robot Operating System) as
the core of the communication system to interconnect different
devices and nodes in this paper, it is demonstrated that if an
Intruder is able to enter in the local network of the UAV
system, he/she is also able to impersonate the GCS (Ground
Control Station) of the UAV and take control of it leading to
an undesirable maneuver or even a dangerous crash against
a building or a person. The security system proposed to
avoid this consists of a simplified method based on ECIES
sending packets, between UAV and GCS, which uses ECDSA
(Elliptic Curve Digital Signature) and are ciphered in RSA
(Rivest-Shamir—Adleman). Thus, it is possible to guarantee
that the high level computer of the UAV is able to identify
the identity of their GCS and prevent of being commanded
by an unauthorized Intruder. Both, the vulnerability and
the solution proposed have been experimentally tested and
validated through software-in-the-loop simulations and in a
outdoor scenario using a small UAV.

Index Terms—UAV,security,software,drone,attack

SECTION I. INTRODUCTION

The application range of UAV (Unmanned Aerial Vehi-
cles) is significantly growing year after year [1]. However,
most previous studies have been only focused from the op-
eration point of view or showing experimental applications
of this new technology, such as aerial manipulation [2]
or inspection of infrastructure [3]. Nevertheless, there are
more aspects that must be considered in real applications
to guarantee that this technology can be applied in security
conditions and commercially exploited. It means that it is
not only important to reach the application goal, but also it
should be secure and reliable in terms of communication.

Moreover, most UAV developments lack a dedicated security
system in their communication system leading to situations
in which an attacker can be a dangerous and unwanted
Intruder. These attacks are ranging from a MiTM (Man in
The Middle) or DoS (Denial-of-Service) to a GPS spoofing
or UAV hijacking. Their consequences in an unmanned
system are critical and extremely dangerous.

In general, data security and security in the communica-
tions are key tasks in most UAV applications. For instance,
this work is one of the task in the RESIST H2020 European
project [4], in which the UAVs must autonomously fly while
they accomplish inspection tasks in bridges or tunnels in
extreme and post-disaster situations caused by both, natural
and man-made hazards. The second case includes man-made
incidents and cyber attacks.

Most well known autopilots, as PX4 [5] or Arducopter
[6], use the MAVLink (Micro Aerial Vehicle Link) [7]
protocol to exchange information with the GCS (Ground
Control Station), while other autopilots, such as the DJT A3
[8], have not direct support for MAVLink communication
and they simply offer a SDK (Software Developer Kit) with
ROS (Robot Operating System) [9] support. In the case
of MAVLink communication, it is usually established with
a HLC (High Level Computer) which can be onboard or
offboard, through the ROS environment using MAVROS.
This acts as a rospackage which translates the MAVLink
messages into ROS topics. Thus, the use of ROS is com-
monly used to ease the communication between the autopilot
and any other device connected to it or that could be in
the same network. ROS acts like a middleware to exchange
messages between the GCS and the UAVs. It consists mainly
in a publish/subscribe pattern messaging. Moreover, from
the application point of view, it is convenient to use an
abstraction layer to manage UAV through ROS. In this way,
it is possible to upgrade the interaction level creating a
graphic user interface which could be fastly and intuitively
operated by a human. Some examples of these interfaces
are QGroundControl [10] and Mission Planner [11]. Nev-
ertheless, these are mainly focused on the cases use of an
standard UAV customer. Other approaches tries to solve this
problem from a generic point of view creating an UAL (UAV
Abstraction Layer) [12] which receives and apply commands
through ROS services.

To sum up, ROS is highly considered for robotic systems
by default, especially in research experiments. However, it is

an insecure environment to be deployed in the commercial
use of a product. In general, in a ROS environment, it is
enough to know the IP address of the ROS-master to read the
information from the nodes which are running in the remote
computer or even to execute processes. There are known op-
tions that can be implemented to get secure communications
in ROS, such as SROS [13], which includes TLS (Transport
Layer Security) support for communications. Currently it is
in a stopped development state and developers advice that
it must not be considered in production-grade. Therefore, it
can not be considered an official security standard of ROS
per se. Moreover, the proposal of configure and install SROS
as secure environment for ROS is not essential to guarantee
that the commands to execute in the UAV comes only from
the authorized GCS. Protecting by a simpler way just the
GCS-UAV communication solves the lack of security for
this case of use.

The main contribution of this paper is to implement a
security method in the communication UAV-GCS without
losing the versatility and ease of use of the ROS environ-
ment. The solution proposed is a simplified method based
on ECIES (Elliptic Curve Integrated Encryption Scheme)
[14]. It consists of sending signed packets using ECDSA
(Elliptic Curve Digital Signature) [15] and ciphered us-
ing RSA (Rivest-Shamir—Adleman) [16] in the messages
exchanged between UAV and GCS. This sign is created
using a private key and it can be verified with its known
correspondent public key. The cipher is realized using the
RSA public key. During the experimental results, the lack
of security of the classical approaches is shown through the
experiments performed, where an intruder attacks during a
mission. Then, the same situation is executed, applying the
security system proposed, foiling the plans of the attacker.
Experiments are presented in the paper both simulation and
real flight.

The paper is organized as follows: Section II exposes
the main ways of a possible UAV external attack. Section III
shows the situation proposed to be solved, with experimental
demonstrations both in simulation and in a real flight. The
core of the solution proposed is explained in Section IV.
Then, the simulation and experimental results are showed in
Section V followed by the conclusions in the last section.

SECTION II. SECURITY REVIEW IN UAV

This section aims to summarize different acts with ma-
licious purpose that can affect UAVs. They are usually
classified depending on if they affect to sensors or commu-
nications. For the case of sensors, it will be only considered
the GPS, since this is the only onboard sensor which lets
an external data input without modifying the environment,
or being near the platform. That is, a potential door to be
broken. In Figure 1 it is shown a common communication
scheme configuration for real flights with some of the attack
methods used in each one of these communications. They
also will be commented along this section.

On the one hand, since the GNSS (Global Navigation
Satellite System), as GPS (Global Positioning System) sen-
sor, is the main source to close the position control loop

GPS Signal * - *
Jamiming . ..
Spoafing . T
k| i oottt ECTETTET '
| Wireless Netwaork '
' Jamming '
'
5‘— : Eavesdroping i
il AUTOPILOT|,_,| HLC ! Spoofing :
Security Pilot ' Replay attack '
Jamming b : Man-In-the-Middle '
[
ONBOARD SYSTEM i

—
L} ' !
BF Telemetry : E .
P ! :
lamming . Router !

Eavesdroping [

Hijacking

Figure 1. Scheme from possible attack ways and its more common tech-
niques

of the UAV, it is one of the most commonly chosen to
be attacked. GPS-based attacks can use spoofing signals
[17] to fake an autonomous trajectory and guide the UAV
to an undesirable area and, even land or crash it if the
attacker wants. However, this is not only for UAVs, but it
can also affect any system that uses a civilian GPS receiver,
as unmanned surface marine systems or autonomous ground
vehicles. Another vulnerability of this sensor is the GPS
jamming, which can be used just to force GPS signal loss or
as a previous attack to hijack the UAV through the spoofing
method.

On the other hand, there are three main ways to establish
a communication link with the UAV which also allows com-
manding the aerial vehicle to perform certain maneuvers.
Thus, depending on the target, the attack method and its
prevention measurements change:

o Radio Frequency Transmitter
Mainly used by the pilot to control the UAV. In
autonomous flights, the security pilot is essential to
manually recover the control of the UAV in cases
where the platform does not behave as it is expected
or in emergency situations. If the pilot loses the RC
link with the UAV due to an attack, the UAV plat-
form can be completely controlled by the attacker, so
the security in this role is critic. This can be initially
done with a SDR (Software Defined Radio) jamming
method [18]. Although commercial RF transmitter
implements modulation methods to avoid possible
attacks, the security methods in this communication
is in continuous improvement [19].
o RF Telemetry communication

The use of a pair of RF telemetry module is a
common method to control the UAV by the GCS
usually through the MAVLink protocol and using a
specific software as QGroundControl [10] or Mis-
sion Planer [11]. Those programs can read and
send MAVLink commands to the UAV autopilot
directly through a telemetry module serial connec-

tion in the GCS. Some of these hardware mod-
ules have known potential vulnerabilities that can
be exploited [20] such as the possibility of having
an intruder in the communications. If it can hear
the communication, depending of the security of
the pair link the attacker, it could take the control
of the aircraft and send commands hijacking the
UAV. Thus, the use of modules specially prepared
with security protocols in the physical layer of the
transmission is highly recommended. In case of the
attacker overpass the security layer of the telemetry
module, the next wall to break is the security of
the communication protocol. MAVLink, as it was
commented in Section I, is a serial communica-
tion protocol used to send/receive messages between
UAYV and GCS in well known autopilots software as
PX4 [5] or Ardupilot [6] among others. Prioritiz-
ing the lightweight in the communications, packets
are sent in plain text without any security system,
what implies to depend completely on the security
implemented in the telemetry module. MAVLink
v2 implements a symmetric key sign method to
improve this lack of security, but it also adds specific
ways where it can accept unsigned packets opening
some ways to be exploited. Moreover, nowadays
the v2 is not fully implemented in the autopilots
previously mentioned because, although PX4 can
use MAVLink v2, the signing functionality has not
been implemented yet, so all packets are sent without
sign. An alternative to avoid this problem would be,
if there is a HLC onboard, disconnecting the RF
telemetry module, so that the only way to establish
a communication with the autopilot is through an
onboard computer. To take this way is important to
secure conveniently the HLC.

Network communications

The last way to establish the communication with
the platform is through the HLC computer, which is
usually a single-board computer (i.e. Raspberry-Pi
[21] or Intel NUC [22]) onboard and connected to
the autopilot. From the autopilot side, this computer
acts like a bridge which links the GCS and the
autopilot through a wireless network. This com-
puter receives external orders from the GCS over
the network, processes the data and sends them to
the autopilot. In case of the autopilots that uses
MAVLink protocol, this is usually by autopilot and
the onboard computer to maintain a transparent com-
munication for the rest of the network. Since the
autopilot is not directly connected to the network, the
main target for an attacker is this device, particularly
the communication software that will be running
to exchange information with the GCS. Thus, the
possible attacks and the measures to avoid them are
mainly the same that can be applied to any other
remote computer in a wireless network (i.e. blocking
not used ports, establishing SSH keys and disabling
password-based SSH connections, etc). This com-

munication is as secure as the security measures
taken in the onboard computer. However, this kind
of architectures usually considers the use of ROS
as communication software between UAV and GCS
and, as it was aforementioned in Section I, in this
situation appears an important lack of security and
vulnerability. ROS uses TCPROS protocol, based
on the standard TCP/IP sockets, to send the mes-
sages, but they are not ciphered and guaranteed an
access control to let who can or not use the services
available in the ROS node running in the HLC of
the UAV. These services are initially deployed by
MAVROS [23], a ROS package which acts like ROS
node interface between the autopilot and the ROS
environment. It reads and sends MAVLink packets
from the autopilot and offers this information to
be easily consulted trough topics and services in
the ROS environment. The ease of communication
of ROS is not only between nodes running in the
same machine. Assuming the case where there is
a computer running ROS, with just changing an
environment variable, a remote machine can read
topics and use the services of the first without the
user of the first knows it with the naked eye. The
services offered by MAVROS let to manage the UAV
and to realize unmanned mission or just for manual
operations, as command changes in the flight mode
or a landing maneuver among others. Thus, it is
crucial to protect the inappropriate access to this
services. There are several possible solutions to this
problem depending on the security level needed of
the final application. It could be to reject all external
requests, or even implement a security method to
be executed by all nodes. For the case presented
in Section III, it will be enough with adding the
security step in the GCS node and UAV node as
it is explained in Section IV. Thus, the rest of the
network can be connected freely to UAV node and to
be informed about the current situation but with the
guarantee that they can not interact with the UAV.

SECTION III. SCENARIO DESCRIPTION

In the RESIST project [4], UAVs fly autonomously
inspecting bridges and tunnels in extreme events, where the
security in communications is a key point to guarantee the
overall security in a post-disaster situation. Figure 2 shows
a simplified scenario of the mentioned application. The
external network that appears called REDComm Network
(Rapid Emergency Deployment mobile Communication in-
frastructure) [24] is a communications infrastructure pre-
pared to be used in crisis situations. Through this network,
the flight plan mission is received in the GCS. This acts like
a secure bridge between that external network and the UAV
to establish a last-step confirmation of the mission before
being sent to the platform.

ROS is the choice selected as middleware because it
is a publisher/subscriber environment which facilitates the
communications and the deployment of nodes. However,

2

REDCOMM NETWORK

8)

GCs

Figure 2. Simplified RESIST performance scenario

ROS does not implement security measures. The hard-
ware/software architecture used is similar to the one pre-
sented in [25], as it is shown in Figure 3. Moreover, the
use of the UAV Abstraction Layer (UAL) [12] provides a
more ease and friendly user-interface to manage the UAV
than MAVROS.

GPS Signal

X

Wireless Network

Y
v

PX4

uAL
AUTOPILOT MAVROS

Intruder

ROS

HLC

ONEBOARD SYSTEM

- LE‘_E"_ . GCS Router
Security Pilot

Figure 3. Simplified performance scenario

For the simulation case, a scheme like the one shown
in Figure 4 has been set where two computers with Ubuntu
Operative System have been used connected in the same
local network. The computer one (IP 192.168.1.138) is in
charge of running the PX4 autopilot in a SITL (Software
In the Loop) simulation with Gazebo simulator [26] jointly
with ROS and UAL. This computer will be the same who
manages the UAV, so it will also act like the GCS of
the system. A second computer in the same network (IP
192.168.1.141) will act as the ”Intruder” which it is assumed
that has violated the security of the REDComm network and
has accessed to the local network where the HLC of the UAV
is connected.

To make it as real as possible, it is assumed that the
Intruder does not know any information about the UAV
node. Then, the Intruder gets access to the network and
expects an excess of truthfulness by the UAV manager. As it
was aforementioned and thanks to the ROS vulnerabilities,
the intruder can execute a basic port scanning order, for
example, with the nmap tool, to look for the master port
communication (by default it is 11311) because an IP with

Wireless Network

PX4
SITL *

I MAVROS UAL

|‘I'

Intruder

Gazebo ROS

: =
. simulator

.

.

. Computer

. P GEs Router

Figure 4. Simulation blocks-scheme of the simulation experiments

that port opened could be the ROS master node. It uses avahi
daemon with avahi-resolve-address to get the name of the
remote machine and add it to the hosts file of the system.
ROS uses this file, through the Operative System, to know
correspondences between the IP and its Domain Name to
know, when consults ROS_MASTER _URI variable, where
the master is located. That local system variable is set as
http://RemoteMachine: 11311, where RemoteMachine is the
hostname of the remote machine found. A way to check
if that machine is a ROS master node is trying to list the
topics. Hereinafter, the intruder can consult any topic and
use the services available.

The steps to discover the ROS master can be automati-
cally executed just with a bash script', as in Figure 5. The
same procedure could be applied in the real flight.

Found -> 192.168.1.138 grievous
Add to hosts file?

1) Yes

2) No

#2721

Set as ROS_MASTER_URI?

1) Yes

2) No

#2721

Found 1 ROS host available

grievous

Figure 5. Output of the bash script to discover ROS master automatically

Now, if the GCS commands the takeoff of the UAV and
start a mission, the state of the UAV, along with more extra
information, is published in topics. Then, the intruder can
monitor the position of the UAV (Figure 6) and decide to
apply a non controlled maneuver, such as landing (Figure
7) in a dangerous area. In Figure 7, it is shown a screen
capture from Wireshark while it was sniffing the network.
The top side of the figure indicates the IP source and the
IP destination of the packet. The bottom side shows the
data contained in the packet transmitted and highlight the
command “/ual/land”. A call to the ROS service to land the
UAV has arrived to the master and it is been applied.

As it is shown in Figure 8 ROS does not inform that
someone strange is monitoring neither that an Intruder is

1. https://gist.github.com/manfer33/5ba2c¢3d467170f9b71c6b5d76e78fd3e

header:
seq: 98462
stamp:
secs: 3286
nsecs: 964000000
frame_id: "odom"
pose:
position:
Xx: 0.0276872012764
y: -0.0169933885336
z: 1.91556882858
orientation:
X: 0.0102642220816
y: -0.00995239757336
Z: -0.0150648430912
w: -0.999784317462

Figure 6. Topic from the ROS master node consulted in the Intruder
computer

Time Source - Destination Protocol Lengtt Info

31 2.339215432 192.168.1.141 192.168.1.138 TCP 68 46074 - 11311 [AC
28 2.333205194 192.168.1.141 192.168.1.138 HTTP/X... 630 POST /RPC2Z HTTP/1
27 2.333036011 192.168.1.141 192.168.1.138 TCP 68 46074« 11311 [AC

141 cP 68 56584 - 3711

[AC
—

20 1.055117765 192.168.1.141 192.168.1.138 TCP 68 56584 ~ 35711 [AC
17 1.851696313 192.168.1.141 192.168.1.138 TCP 140 56584 - 35711 [PS

16 1.851478386 192.168.1.141 192.168.1.138 TCP 68 56584 ~ 35711 [AC

68 46070 - 11311 [AC
469 POST /RPC2 HTTP/i]
68 46070 —~ 11311 [AC

10 1.031735180 192.168. 192.168.1.138
PO6106613 3 1
1.006045985

192.168.1.136

162 2.746297971 192.168.1.138 192.168.1.141 TCP 68 11311 —~ 46896 [AC
160 2.731563010 192.168.1.138 192.168.1.141 TCP 164 40451 - 30248 [PS
[157 2.718874723 192.166.1.138 192.168.1.141 TCP 68 11311 - 46096 [FT
w <methodCall>
w <methodName>
lookupService
</methodName>
~ <params>
w <param>
w <value>
~ <string>
/rosservice
</string>
</value>
</param>
~ <param>
v <value>
w <string>
/ual/land
</string>
</value>
</param>
</params>
</methodCall>

) 41 67 65 6e 74 3a 20 78 6d 6c 72 70 63 6c 69 62 Agent: x mlrpclib

2e 70 79 2f 31 2 30 2¢ 31 20 28 62 79 20 77 77 .py/1.8. 1 (by ww
) 77 2¢ 70 79 74 68 6T Ge 77 61 72 65 e 63 6f 60 W.python ware.com
) 29 0d Ba 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a). Conte nt-Type:
) 20 74 65 78 74 2f 78 6d 6c Od Oa 43 Gf 6o 74 65 text/xm 1.-Conte
e 74 2d 4c 65 6e 67 74 68 3a 20 32 32 37 Od Ga nt-Lengt h: 227 -
) 6d 0a 3c 3f 78 6d 6 20 76 65 72 73 69 6f 66 3d - <?xml version=
) 27 31 2e 39 27 3f 3e Pa 3C 60 65 74 68 6T 64 43 '1.0'7>- <metnodC
) 61 Bc 6c 38 Ga 3c 6d 65 74 68 6f 64 4o 61 6d 65 all>.<me thodName
3e B¢ 6F 6f 6b 75 70 53 65 72 76 60 63 65 3c 2f >lookupS ervice</
) 6d B5 74 68 6F 64 4e 61 6d 65 3e Ga 3c 70 61 72 methodNa me>-<par

61 6d 73 38 0a 3c 70 61 72 61 6d 3e 0a 3c 76 61 ams>-<pa ram>-<va
6c 75 65 3 3c 73 74 72 69 6e 67 3e 2f 72 6f 73 lues<str ing>/ros
73 65 72 76 69 63 65 3c 2f 73 74 72 69 6e 67 3 service< /string>
) 3c 2f 76 61 6c 75 65 32 0a 3c 2f 70 61 72 61 6d </value> -</param
0180 3e Oa 3c 70 61 72 61 6d 3e Ba 3c 76 61 6c 75 65 >-<param >-<value
0190 3e 3c 73 74 72 69 6e 67 3e ><string
91a0 3c 2f 73 74 72 69 e 67 3e 3c 2f 76 61 b¢ [E</Stri ng></val
0100 75 65 3e Ba 3c 2f 70 61 72 61 6d 3e 0a 3c 2F 70 ue>-</pa ram>-</p
) 61 72 61 6d 73 36 Ba 3c 2f 6d G5 74 G8 6F 64 43 arams>.< /methodC
1 A1 Rr Rr 20 Aa all>.

Figure 7. Intruder message detected usign Wireshark

using their services. The GCS can only observe how the
UAV executes an non commanded maneuver.

INFO] [1564373469.115333608, 13.880000000]: UAL 1 ready!

INFO] [1564374896.393162208, 1439.628000000]: Parameter [MPC_TKO_SPEED] \
INFO] [1564374896.694561526, 1439.930000000]: Set flight mode [OFFBOARD]
INFO] [1564374896.694612938, 1439.930000000]: Trying to set [OFFBOARD] mc
INFO] [1564374896.996317412, 1440.232000000]: Set flight mode [OFFBOARD]
INFO] [1564374896.996365569, 1440.232000000]: Trying to set [OFFBOARD] mc
INFO] [1564374903.903424524, 1447.132000000]: Flying!

INFO] [1564375273.032991719, 1816.0618000000]: Set flight mode [AUTO.LAND]
INFO] [1564375273.033045607, 1816.018000000]: Trying to set [AUTO.LAND] ¢
INFO] [1564375273.334075516, 1816.318000000]: Set flight mode [AUTO.LAND]
INFO] [1564375273.334116607, 1816.318000000]: Trying to set [AUTO.LAND] r
INFO] [1564375273.334142096, 1816.318000000]: Landing...

INFO] [1564375276.836299876, 1819.818000000]: Landed!

Figure 8. ROS Master does not inform about the presence of the external
call

SECTION IV. SOLUTION PROPOSED

The solution proposed in this paper (Figure 9) is applied
in the ROS nodes of GCS and UAV without changing
the regular way of using ROS. GCS consists of a ROS
python node that encrypts, signs and sends the message
to the UAL node receiver running in the HLC. For that
solution, the UAV receiver is an enhanced version of a UAL
service which decrypts, verifies the signs of the message
and, if the checks are correct, applies the command received.
This method allows us creating a secure channel to send
commands to control the UAV just with a regular ROS in-
stallation with an UAL. Having UAL in GCS is advisable for
access to the messages to send automatically. It lets an easy
way to any other entity in the network to receive information
about the state of the platform and the mission. Also, if any
entity wants to know how is going the mission, it only needs
to have installed ROS and set ROS_MASTER_URI variable
with the UAV IP. Considering that the main use will be in
emergency situations, the fast to access to that information
is key to inform about the situation. However, it is necessary
to guarantee that despite everyone can heard, just one, the
GCS, can command the UAV.

."_'\
[
A
L]
Security Pilot PS Signal
ooy LR SR Y PP R U PP E .
—— '
ST:::rty Secure Sender .
MAVROS implemented Intwer |
Px4 +1+ Backend Cignes e !
™ AUTOPILOT packet .
x '
Sign the :
E cammand '
UAL H ECDS) '
‘n'j l
F Load keys il
E" ROS| :
ROS 2 .
H :
—
ECDSA public key _ :
'
RSA private key ECDSA private key '
% '
HLC RSA public key .
. Router GCs '
'
ONBOARD SYSTEM

Figure 9. System blocks-scheme with sign verification implemented

The solution proposed is based on both RSA and
ECDSA algorithms working together. They are asymmetric

key algorithms commonly known in cryptography and secu-
rity. These algorithms use a pair of keys, public and private,
that are generated using mathematical one-way functions.
Public key can be shared freely but the private key must be
keep private to maintain the security of the communication.
RSA is used to encrypt the information to send. Its structure
has been defined by the authors as it is shown in Figure
10. Public-key algorithm has been used for encryption, in
contrast of symmetric, due to a versatility of use. By this
way, this solution add the possibility of use more than one
UAV in an easier way. The GCS does not need to have a
symmetric key for each platform, it only needs to consult
the correspondent public key. On the other hand, if the GCS
has a problem a GCS backup does not need to depend of a
symmetric key preloaded. In any case, the GCS only needs
to keep properly the ECDSA private key.

Nonce | Command ECDSA sign

RSA encrypted

Figure 10. Structure of the packet sent from the GCS

In order to ensure that only one entity will be able to
manage the UAV, the GCS and UAV will share between
them (offline of the network) their correspondent public keys
before starting the mission. In case of a failure in the GCS,
or if it would be inoperative during the mission, it has been
implemented a service in UAL which returns the RSA public
key of UAV. Thus, it is recommendable to add more than
one ECDSA public key during the preflight tasks to allow
managing the UAV from a backup GCS.

A. ECDSA signing

ECDSA is a variant of Digital Signature Algorithm
which uses elliptic-curve cryptography. It is used to verify
the truthfulness of the information transmitted. ECDSA is
chosen because it is more secure and faster than RSA [27].
It can get the same level of security as RSA with smaller
keys, but it can not be used for cipher, so it is also necessary
the use of RSA for that purpose.

The ECDSA key pair files are generated in the GCS
through of openssl [28] software. To generate them the
algorithm calculates math operations over the curve whose
results depend on the curve selected. For this case, the
curve secp256kl has been selected. As example, this is
the same curve used in the signing operations of Bitcoin
and Ethereum blockchain and it is defined in Standards for
Efficient Cryptography (SEC) [29].

The plain text information to be sent is signed with
the ECDSA private key, allocated in the GCS. This sign
is generated using the ECDSA private key, the message to
sign and a random number. The sign is sent with the rest
of information. Once the packet is received, the UAV node
can verify that the sign received correspond to that message
because it knows the ECDSA public key from GCS and the

curve used. When this step is confirmed, the command is
executed. Otherwise, the packet is rejected and the GCS is
informed of a possible cyber-attack. By this way, only in the
GCS can be generated the ECDSA key pair. In the packet, it
has been added a nonce to avoid the possibility of a replay
attack.

B. RSA encryption

RSA public key is used to encrypt the packet signed
through math operations with the message to cipher. The
algorithm is based on the factorization of the product of
two large prime numbers. Just the private key owner can
decrypt the message and read it. Thus, only the UAV will
generate the RSA key pair. This key pair is generated usign
the openssl software again. The public key is based on
two large prime numbers, which form part of the private
key. GCS encrypts data using UAV public key and sends
it to the UAV. When it arrives, it is decrypted with the
private key allocated in the onboard platform. The math
operations applied with the RSA private key let recover the
original message. NIST (National Institute of Standards and
Technology) recommends an RSA key length of 2048 bits.
This specification is not a problem for the Raspberry Pi
as HLC in computation terms because generally there are
not multiple transmissions per second of commands in an
autonomous flight of UAV. The messages to be decrypted
are calls to ROS services (i.e. execute a take off or go to
waypoint) processed when they are received.

SECTION V. EXPERIMENTS

This section is focused on the demonstration and val-
idation of the solution proposed in Section IV. First, it
is presented a detailed description of the system used to
accomplish the experiments, including both the software and
the hardware. Second, two situations in which an Intruder
acts maliciously, are presented and described to remark the
vulnerabilities of a system that does not include a security
system in their communications. Finally, the results of using
the ECIES-based security method proposed in this paper
are presented. Complete videos of the experiments can be
consulted in 2.

A. System description

The flight tests have been carried out with a DJI F550
hexarotor frame, mounting DJI 2312E rotors, DJI 9x4.5inc
propellers and a 4S 5300 LiPo battery for the propulsive
system (Figure 11). The autopilot is a Pixhawk [30] running
PX4 flight stack (v1.8.0) and the HLC is a Raspberry Pi,
with Ubuntu Mate 16.04 as Operative System. The GCS is
a common laptop which also runs Ubuntu 16.04 and has
the function of monitoring and remotely control de high
level task of the platform during an autonomous operation.
Both the GCS and HLC use ROS Kinetic as ros version. In
contrast, the Intruder uses Ubuntu 18.04 and ROS Melodic
to show that the vulnerability does not depend on a specific
version but it is a regular behaviour own of ROS. UAL (v2.2)

2. https://hdvirtual.us.es/discovirt/index.php/s/24K5Qpm9SaL.nwF5

is used to establish the communication with the autopilot in
the Raspberry Pi. The Intruder will work in other computer
far away from the sight of the GCS operator. The architec-
ture implemented follows the one presented previously in
Figure 9.

RASPBERRY PI

AUTOPILOT

Figure 11. DJI F550 used in flight experiments

Moreover, as it has been commented in Section III, and
has shown in Figure 12, before real flights Gazebo has been
used as a simulation environment by PX4 running in SITL.

Figure 12. Gazebo as simulation environment

B. Exploited cases

During the experiments it has been applied the same
steps than in simulation in Figure 5 to know the information
of the master and get access to topics and services.

1) Hijacking. Once the Intruder access to the topics and
services, it can monitor the UAV and hijack it during a
trajectory commanding a new waypoint non controlled by
the GCS. In this case, the Intruder also commands a land
maneuver when the platform is out of the control of the
pilot and the GCS.

As it shows in Figure 13, the GCS commanded initially
a waypoint but during the operation the Intruder not only
is able to take the control of the UAV, but also sent a
new waypoint to divert the original trajectory followed by
a land maneuver. The Figure 13 shows a sequence of the
experiment where the green line is the path to the waypoint
sent by the GCS and the red line is the path to the waypoint
of the Intruder.

Figure 13. Video frames with the hijacked trajectory

In Figure 14 it is represented part of the data logged
by the autopilot. The figure shows the path with the set-
point to reach and the position of the UAV along the flight.
The desirable trajectory to follow is the green line and the
commanded by Intruder is the red line.

UAYV Estimated Trajectory
Setpoint Commanded

10|~ GCS Trajectory
----- Intruder Trajectory

Distance [m]
Figure 14. Trajectory of UAV hijacked

The Figure 15 shows the last part of the experiment
where the Intruder execute a landing operation when UAV
arrives to the waypoint.

2) Crash. One of the most extreme situation of hijacking
will be if instead of commanding waypoints or a landing
maneuver the Intruder marks as objective a place where the
UAV crashes against a surface or a person. In the real flight
test the UAV was commanded to impact with a obstacle
during a hover state. In this case it was the security net of
an outdoor flight field (Figure 16). The result is shown in
Figure 17.

In Figure 18, the behaviour of the autopilot IMU gy-
roscope has been represented at the bottom of the figure
while in the top is showed the transmitter log. The space
highlighted is the offboard mode, where the UAV is flying
completely autonomous through external references of the
GCS or the Intruder. At the end of this graph, the gyroscope
registers a great disturbance which corresponds with the

Manual Control Input (Tr itter)
T T

50 - 1

Percetage [%]
o

-50 1

s X | Pitch === / Roll Throttle Yaw [l Landing Operation
-100
30 35 40 45 50
Time [s]
Local Position Z
m r . - . . T : :
— Z Setpoint Land [l Landing Operation
=6 i
£
8
24t 1
&
k]
a
2r 4
ol . . L . . . L L L .
30 32 34 36 38 40 42 44 46 48 50
Time [s]

Figure 15. Autonomous undesirable landing operation

Figure 16. UAV hijacked to be crashed

time of the crash. In Figure 19 is presented the path followed
by the UAV until it crashes against the net.

C. Implemented solution

To verify that the proposed solution is valid, it has been
implemented in a new ROS service to execute a secure
landing operation. In this case, the Intruder can still access to
the information and monitor the UAV. Nevertheless, if it tries
to manage the platform, the system rejects their requests of

Figure 17. Result of the crash

Percetage [%]

Angular Speed [deg/s]

Manual Control Input (Transmitter)
T T T

50 __A,r""““““J B
orv \v) V
50 - i
[X /Pitch Y /Roll Throttle Yaw [Offboard]
100
35 40 45 50 55 60
Time [s]
10 Raw Angular Speed (Gyroscope)
T . : . T
50
0 fon
5F
—X—Y Z [Offboard
10+
| . | . | .
30 35 40 45 50 55 60
Time [s]

Figure 18. Log from sensor in impact time

UAV Estimated Trajectory
Setpoint Commanded

Distance [m]

10
Distance [m]

Figure 19. Log from sensor in impact time

commanding the UAV because thanks to the security system
implemented, it is not recognized as an authorized UAV
manager. This reject response can be observed in Figure

20.

INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]

[1564454050.
[1564454053.
[1564454053.
[1564454053.
[1564454054.
[1564454054.
[1564454054.
[1564454054.
[1564454061.

334412362,
643878093,
945009932,
945054583,
246266593,
246308041,
547465139,
5475605331,
452901427,

14.
17.
17.
17.
17.
17.
18.
18.
25.

©32000000] :
340000000] :
640000000] :
640000000] :
942000000] :
942000000] :
242000000] :
242000000] :
144000000] :

UAL 1 ready!

Parameter [MPC_TKO_SPEED] value is [1.!
Set flight mode [OFFBOARD] response.su¢
Trying to set [OFFBOARD] mode; mavros_:
Set flight mode [OFFBOARD] response.sut
Trying to set [OFFBOARD] mode; mavros_t
Set flight mode [OFFBOARD] response.su¢
Trying to set [OFFBOARD] mode; mavros_:
Flying!

FOMMAND :

Land,False

NFORMATION RECEIVED
NONCE: 1cc790fed5d68669aa8f8f9f18212b6febc30a3712e07ad4ccb7c1foodd1ead3a

ERROR] [1564454119.440196, 83.680000]: REJECTED ATTEMP OF USE LANDING SERVICE

PIGN: 333331326532343165613537663362633538303166336263323661336166616666653037306/561:

Figure 20. ROS reject landing operation

This experiment has considered even that the Intruder
knows the security mechanism used in the communications
and it generates it own key-pairs (ECDSA and RSA). Al-
though the message could be correctly signed, it has not

been signed with the GCS private key. Thus, the check with
the GCS public key results in error responding with a False,
as it shows in Figure 21.

Figure 21. Intruder gets a fail in the try of command the UAV

SECTION VI. CONCLUSIONS

This paper has been briefly reviewed the current security
systems implemented in UAVs and it has analyzed one of
the most common vulnerabilities proposing a method to
solve it. This security method aims to protect the managing
of the UAV from possible intruders attacks and guarantees
that the message received comes from the authorized GCS.
The solution proposed has been demonstrated in real flights
experiments along the Section V. It has been designed
to reject any packet or modified replay packet sent by a
Intruder with a verification step. By this way, it is possible
to send a secure message point to point in an insecure
environment as ROS.

Thus, the solution proposed based on the ECIES curves
has been shown as a feasible technique to increase the
security in the communication systems which use ROS,
without losing the versatility and easiness provided by the
ROS environment.

A potential improvement of this work consist of adding
more than one public key in the HLC to be prepared in
case of the GCS fails or it results attacked. Although in this
paper is demonstrated the secure use of this implementation,
to have any other backup GCS (with its own key pairs) is
highly recommendable.

This method would be used in multi-UAV communica-
tions too, both for different commands for each UAV and
for a multicasting communication. As the communication
system is ROS, the security implemented in this paper is
independent of the way that the messages arrive to the
UAVs.

As future work, the authors plan to implement this
method as UAL ROS services and study other security
techniques which can improve the overall security of the
system.

SECTION VII. ACKNOWLEDGEMENT

This work has been supported by the ARTIC Project,
funded by the Spanish Ministerio de Economia, Industria,
y Competitividad (RTI12018-102224-B-100), the H2020 RE-
SIST Project, funded by the European Commission (H2020-
MG-2017-769066) and by the Spanish Ministerio de Edu-
cacion, Cultura, y Deporte, FPU Program. Also, the authors
would like to acknowledge the support given by the GRVC

members, particularly to Rafael Salmoral and Rebeca Perez
for their contribution during the experiments.

(1]

(2]

(3]

(4]

(3]

(6]
(7]
(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

K. Valavanis and G. Vachtsevanos, “Handbook of un-
manned aerial vehicles,” in. Jan. 2015, pp. 383-384,
ISBN: 978-90-481-9706-4. DOI: 10.1007/978-90-481-
9707-1_135.

A. Suarez, M. Fernandez, M. Perez, G. Heredia,
and A. Ollero, “Lightweight and Compliant Long
Reach Aerial Manipulator for Inspection Operations,”
pp. 6746-6752, 2018. por: 10.1109/IROS.2018.
8593940.

P. J. Sanchez-Cuevas, P. Ramon-Soria, B. Arrue, A.
Ollero, and G. Heredia, “Robotic system for inspec-
tion by contact of bridge beams using uavs,” Sensors,
vol. 19, no. 2, p. 305, 2019.

(. Resilient transport infrastructure to extreme events
(resist) h2020 european project, [Online]. Available:
http://www.resistproject.eu/aboutresist.

L. Meier, D. Honegger, and M. Pollefeys, “Px4:
A node-based multithreaded open source robotics
framework for deeply embedded platforms,” in 2015
IEEE International Conference on Robotics and Au-
tomation (ICRA), 2015. po1: 10.1109/ICRA.2015.
7140074.

(). Ardupilot project, [Online]. Available: http://
ardupilot.org/ardupilot/.

(). Micro aerial vehicle link (mavlink), [Online].
Available: https://mavlink.io/en/.

(. Dji a3 - official web page, [Online]. Available:
https://www.dji.com/bg/a3/info.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T.
Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros:
An open-source robot operating system,” in /CRA
Workshop on Open Source Software, 2009.

(). Mission planer - ground control station software,
[Online]. Available: http://ardupilot.org/planner/.

(). Qground control - ground control station for
the mavlink protocol, [Online]. Available: http://
ggroundcontrol.com/.

F. Real, A. Torres-Gonzalez, P. R. Soria, J. Capitan,
and A. Ollero, “Ual: An abstraction layer for un-
manned vehicles,” in 2nd International Symposium
on Aerial Robotics (ISAR), 2018.

R. White, H. I. Christensen, and M. Quigley, “SROS:
securing ROS over the wire, in the graph, and through
the kernel,” CoRR, vol. abs/1611.07060, 2016. arXiv:
1611.07060. [Online]. Available: http://arxiv.org/abs/
1611.07060.

V. Shoup, “A proposal for an iso standard for public
key encryption.,” IACR Cryptology ePrint Archive,
vol. 2001, p. 112, Jan. 2001.

D. Johnson, A. Menezes, and S. Vanstone, “The ellip-
tic curve digital signature algorithm (ecdsa),” Int. J.
Inf. Secur., vol. 1, no. 1, pp. 36-63, Aug. 2001, ISSN:
1615-5262. por1: 10.1007/s102070100002. [Online].
Available: http://dx.doi.org/10.1007/s102070100002.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

R. L. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public-key cryp-
tosystems,” Communications of the ACM, 1978.

A. Ranganathan, H. élafsdéttir, and S. Capkun,
“SPREE: Spoofing Resistant GPS Receiver,” 2016.
arXiv: 1603.05462. [Online]. Available: http://arxiv.
org/abs/1603.05462.

K. Pérlin, M. M. Alam, and Y. Le Moullec, “Jamming
of uav remote control systems using software defined
radio,” 2018. por: 10.1109/ICMCIS.2018.8398711.
G. Mika and A. Németh, “Scfdm based communi-
cation system for uav applications,” 2015. poOI: 10.
1109/RADIOELEK.2015.7129014.

(. Hijacking quadcopters with a mavlink exploit,
[Online]. Available: https://hackaday.com/2015/10/
15/hijacking-quadcopters-with-a-mavlink-exploit/.
(). Raspbery pi - official web page, [Online]. Avail-
able: https://www.raspberrypi.org/.

(. Intel nuc - official intel webpage, [Online]. Avail-
able: https://www.intel.com/content/ www/es/es/
products/boards-kits/nuc.html.

(). Mavros - mavlink to ros gateway with proxy for
ground control station, [Online]. Available: https://
github.com/mavlink/mavros.

(. Rapid emergency deployment mobile communi-
cation infrastructure (redcomm), [Online]. Available:
http://www.redcomm-project.eu/description.html.

I. Mademlis, A. Torres-Gonzalez, J. Capitin, R.
Cunha, B. Guerreiro, A. Messina, F. Negro, C. Le
Barz, T. Gongalves, A. Tefas, et al., “A multiple-uav
software architecture for autonomous media produc-
tion,”

N. Koenig and A. Howard, “Design and use
paradigms for gazebo, an open-source multi-robot
simulator,” in 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), vol. 3, Sep. 2004, 2149-2154
vol.3. por: 10.1109/IROS.2004.1389727.

A. V. Mota, S. Azam, B. Shanmugam, K. C. Yeo, and
K. Kannoorpatti, “Comparative analysis of different
techniques of encryption for secured data transmis-
sion,” in 2017 IEEE International Conference on
Power, Control, Signals and Instrumentation Engi-
neering (ICPCSI), Sep. 2017, pp. 231-237. pot: 10.
1109/ICPCSI.2017.8392158.

(). Openssl - robust, commercial-grade and general-
purpose cryptography library, [Online]. Available:
https://www.openssl.org/.

P. Hess, “Sec 2: Recommended elliptic curve domain
parameters,” 2000.

(). Pixhawk flight controller, [Online]. Available:
https://docs.px4.io/en/flight%5C_controller/pixhawk.
html.

