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Abstract  

This paper aims to propose a new direct algorithm to solve the neutrosophic linear programming where the variables 

and right-hand side represented with triangular neutrosophic numbers. The effectiveness of the proposed procedure 

is illustrated through numerical experiments. The extracted results show that the new algorithm is straightforward 

and could be useful to guide the modeling and design of a wide range of neutrosophic optimization. 

Keywords: Single valued neutrosophic number; Neutrosophic linear programming problem; Linear programming 

problem.  

1. Introduction  

 Fuzzy set originally introduced by Zadeh [1] in 1965 is a useful tool to capture the imprecision and uncertainty in 

decision-making [2, 3]. It is characterized by a membership degree between zero and one, and the non-membership 

degree is equal to one minus the membership degree. The intuitionistic fuzzy set (IFS) theory launched by 

Atanassov [4], addresses the problem of uncertainty by considering a non-membership function along with the fuzzy 

membership function on a universal set. The membership degree of an object is complemented with a non-

membership degree that gives the extent to which an object does not belong to the IFS such that the sum of the two 

degrees should be less than or equal to 1.  

Neutrosophy has been proposed by Smarandache [5] as a new branch of philosophy, with ancient roots, dealing with 

“the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra”. The 

fundamental thesis of neutrosophy is that every idea has not only a certain degree of truth, as is generally assumed in 

many-valued logic contexts but also a falsity and indeterminacy degrees that have to be considered independently 

from each other. Smarandache seems to understand such “indeterminacy” both in a subjective and an objective 

sense, i.e., as uncertainty as well as imprecision, vagueness, error, doubtfulness, etc. Neutrosophic set (NS) is a 

generalization of the fuzzy set [1] and intuitionistic fuzzy set [4] and can deal with uncertain, indeterminate and 

incongruous information where the indeterminacy is quantified explicitly and truth membership, indeterminacy 

membership and falsity membership are completely independent. It can effectively describe uncertain, incomplete 

and inconsistent information and overcomes some limitations of the existing methods in depicting uncertain decision 

information. In the neutrosophic logic, each proposition is estimated by a triplet viz, truth grade, indeterminacy 

grade and falsity grade. The indeterministic part of uncertain data, introduced in NS theory, plays an important role 

in making a proper decision which is not possible by intuitionistic fuzzy set theory. Since indeterminacy always 

appears in our routine activities, the NS theory can analyze the various situations smoothly. Moreover, some 

extensions of NSs, including interval neutrosophic set [6], bipolar neutrosophic set [7], single-valued neutrosophic 

set [8], multi-valued neutrosophic set [9], and neutrosophic linguistic set [10] have been proposed and applied to 

solve various problems [11-20]. 
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Linear programming problem (LP) is a method for achieving the best outcome (such as maximum profit or 

minimum cost) in a mathematical model represented by linear relationships. Decision-making is a process of solving 

the problem and achieving goals under the asset of constraints, and it is very difficult in some cases due to 

incomplete and imprecise information. In uncertain linear programming problems, such as approaches using fuzzy 

and stochastic logics, interval numbers, or uncertain variables, some uncertain linear programming methods have 

been developed in the existing literature. For example, Bellman and Zadeh [21] introduced fuzzy optimization 

problems where they have stated that a fuzzy decision can be viewed as the intersection of fuzzy goals and problem 

constraints. Many researchers such as; Zimmermann [22], Tanaka et al.[17], Campos and Verdegay [23], 

Rommelfanger et al.[24], Cadenas and Verdegay [25] who were dealing with the concept of solving fuzzy 

optimization problems, later studied this subject. In the past few years, a growing interest has been shown in Fuzzy 

optimization. Buckley and Feuring [26] introduced a general class of fuzzy linear programming, called fully 

fuzzified linear programming (FFLP) problems, where all decision parameters and variables are fuzzy numbers. 

Fuzzy mathematical programming, using a unified approach, has been studied by [27]. Lodwick and Bachman [28] 

have studied large scale fuzzy and possible optimization problems. Buckley and Abdalla [29] have considered 

Monte Carlo methods in the fuzzy queuing theory. Some authors have considered fuzzy linear programming, in 

which not all parts of the problem were assumed to be fuzzy, e.g., only the right-hand side and the objective function 

coefficients were fuzzy; or only the variables were fuzzy [30-35]. The fuzzy linear programming problems in which 

fuzzy numbers represent all the parameters and variables are known as fully fuzzy linear programming (FFLP) 

problems. FFLP problem with inequality constraints studied in [36-37]. However, the main disadvantage of the 

solution obtained by the existing methods is that it does not satisfy the constraints exactly i.e., it is not possible to 

obtain the fuzzy number of the right-hand side of the constraint by putting the obtained solution in the left-hand side 

of the constraint. Dehghan et al. [38] proposed some practical methods to solve a fully fuzzy linear system (FFLS) 

that is comparable to the well-known methods. Then they extended a new method employing Linear Programming 

(LP) for solving square and non-square fuzzy systems. Lotfi et al. [39] applied the concept of the symmetric 

triangular fuzzy number, obtained a new method for solving FFLP by converting an FFLP into two corresponding 

LPs. Kumar et al. [40] pointed out the shortcomings of the above methods. To overcome these shortcomings, they 

proposed a new method for finding the fuzzy optimal solution of FFLP problems with equality constraints. Saberi 

Najafi and Edalatpanah [41] pointed out the method of [40] needs some corrections to make the model well in 

general; for other methods see[42-46]. In general, the above existing methods can be applied for the following type 

of FFLP problems: 

i) FFLP Problem with nonnegative fuzzy coefficients and nonnegative fuzzy variables. 

ii) FFLP Problem with unrestricted fuzzy coefficients and nonnegative fuzzy variables. 

iii) FFLP Problem with nonnegative fuzzy coefficients and unrestricted fuzzy variables. 

However, the above mentioned methods can-not deal with indeterminate optimization problems. Furthermore, the 

existing uncertain linear programming methods are not really meaningful indeterminate programming because these 

uncertain linear programming methods are generally to turn these optimization models into crisp objective 

programming models to find unique crisp optimal solutions rather than indeterminate solutions in uncertain 

situations. However, the unique crisp optimal solutions obtained by existing uncertain linear programming methods 

may be conservative and relatively insensitive to input uncertainty or the optimization performance may degrade 

significantly. From an indeterminate viewpoint, an indeterminate optimization problem should contain possible 

ranges of the optimal solutions (indeterminate intervals) corresponding to various indeterminate ranges to be 

suitable for indeterminate requirements rather than the unique crisp optimal solution under indeterminate 

environments. Then, Abdel-Baset et al. [47] and Pramanik [48] proposed neutrosophic linear programming methods 

based on the neutrosophic set (NS) concept. Also, Abdel-Baset et al. [49] introduced the neutrosophic LP models 

where their parameters are represented with trapezoidal neutrosophic numbers and presented a technique for solving 
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them. However, it is observed that Abdel-Basset et al.[50] have considered several mathematical incorrect 

assumptions in their proposed method and hence, it is scientifically incorrect to use this method [51]. 

So, the main purposes of this paper are (1) to propose a new direct model, including neutrosophic variables and the 

right-hand side; and (2) to present a solution method for this neutrosophic LP problems.  This paper organized as 

follows: some basic knowledge, concepts of neutrosophic set theory, an arithmetic operation are introduced in 

Section 2. In Section 3, we present a new algorithm to solve the neutrosophic LP.  In Section 4, a numerical example 

is given to reveal the effectiveness of the proposed model. Finally, some conclusions are drawn in the last section. 

2. Preliminaries  

In this section, we present some basic definitions and arithmetic operations on neutrosophic sets.  

Definition 1 [5].  Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set 

A in X is characterized by a truth-membership function TA(x), an indeterminacy membership function IA(x), and a 

falsity-membership function FA(x). If the functions TA(x), IA(x) and FA(x) are singleton subintervals/subsets in the 

real standard [0, 1], that is TA(x): [0,1],X   IA(x): [0,1],X  and FA(x): [0,1].X  Then, a Single valued 

neutrosophic set A is denoted by {( ( ) ( ) ( )) | },  ,  , A A AA x T x I x F x x X  which is called an SVN. Also, SVN 

satisfies the condition: 

                                                        .0 ( ) ( ) ( ) 3A A AT x I x F x                                                         

Definition 2 [5].   For SVNSs A and B, A ⊆B if and only if ,( ) ( )A BT x T x ( ) ( ),A BI x I x  and 

)  ( ) (A BF x F x for every x in X. 

Definition 3 [50]. A   triangular neutrosophic number (TNNs) is denoted by ( , , ), ( , , )l m uA a a a i   

whose the three membership functions for the truth, indeterminacy, and falsity of x can be defined as follows: 
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Where, .0 ( ) ( ) ( ) 3,
A A A

x x x x A    

     Additionally, when 0,la   A
 is called a 

nonnegative TNN. Similarly, when 0,la  A
 becomes a negative TNN. 

 

Definition 4 [50].  Suppose
1 1 1 1 1 1 1( , , ), ( , , )A a b c       and  

2 2 2 2 2 2 2( , , ), ( , , )A a b c       be two TNNs. 

Then the arithmetic relations are defined as: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , , ), ( , , )i A A a a b b c c                  

1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , , ), ( , , )ii A A a c b b c a                 
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3. Proposed method 

Consider the following trapezoidal neutrosophic linear programming (TNLP) with m constraints and n variables; 

Max (Min) ( )

subject to

,

tc x

Ax b

      ( 1) 

                                    x is a non-negative TNN. 

Where 
ij m n

A a


    is the coefficient matrix, 
1 2 3
, , , ,

t

m
b b b b b   

is the triangular neutrosophic available 

resource vector,  1 2 3
, , , ,

t

n
c c c c c is the objective coefficient vector and  1 2 3

, , , ,
t

n
x x x x x is the 

triangular neutrosophic decision variable vector. 

The steps of the proposed method are as follows: 

Step 1: Assuming , , ; , , ,l m r

b b b
b b b b T I F  , , ; , , ,l m r

x x x
x x x x T I F   and using Definition 4, the LP 

problem (1) can be transformed into the problem (2). 
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1

1

Max (Min) , , ; , , ,
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Step 2: Using definition 2 -4, and with the following assumptions: 
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the LP problem (2) can be transformed into the problem (3). 
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Step 3: By the neutrosophic nature, the LP problem (3) can be transformed into a multi-objective problem (4). 
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Step 4: Using summation of all object functions, the Model (4), obtained in Step 3, can be converted into the crisp 

linear programming problem as follows: 

                    
1 1 1

Max (Min) ,
j j j

n n n
l m r

x x x

j j j

u u u T I F
  

                                                            (5) 

                            Subject to:      all constraints of Model (4). 

 

Step 4: Find the optimal solution x  by solving the crisp linear programming problems obtained in problem (5) and 

find the neutrosophic optimal value by putting in the objective function. 

4. Numerical example  

In this section, a numerical example problem has been solved using the proposed method to illustrate the 

applicability and efficiency of it.   

 

Example 1 . 

                        

1 2( ) 5 4Max z x x   

subject to              
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1 2

1 2

1 2

2

1 2

6 4 3,5,6;0.6,0.5,0.6 ,

2 5,8,10;0.3,0.6,0.6 ,

12,15,19;0.6,0.4,0.5 ,

14,17,21;0.8,0.2,0.6 ,

, 0.

x x

x x

x x

x

x x

   

   

    

  



                                                   (6) 

Now. To solve the problem with the proposed method, we have the following steps: 

Step 1: Assuming , , ; , , ,l m r

x x x
x x x x T I F   and using Definition 4, the LP problem (4) can be transformed 

into the problem (7). 

                   

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

Max 5 , , ; , , 4 , , ; , ,

subject to
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2 2 2
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, , ; , , 14,17,21;0.8,0.2,0.1 ,

, , ; , , 0,
j j j

x x

l m r l m r

x x x x x x

l m r

x x x
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j j j x x x
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   

        

    

    .j

       (7) 

Step 2: Using definition 2 -4, the LP problem (7) can be transformed into the problem (8). 

         

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

Max 5 4 ,5 4 ,5 4 ; , ,

subject to

6 4 ,6 4 ,6 4 ; , , 3,5,6;0.9,0.1,0.2 ,
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, , ; , ,
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r l m m l r
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    
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       

2 2 2
2 2 2

12,15,19;0.8,0.3,0.1 ,

, , ; , , 14,17,21;0.8,0.2,0.1 ,

, , ; , , 0, .
j j j

l m r

x x x

l m r

j j j x x x

x x x T I F

x x x T I F j

  

    

   

                                  (8) 

Step 3: Using the Step 4 of our proposed method, the Model (8), can be converted into the crisp linear programming 

problem as follows: 

1 2 1 2 1 2
1 2 1 2 1 2

1 2 1 2 1 2 2

Max 5 4 5 4 5 4

subject to

6 4 3, 2 5, 12, 14,

l l m m r r

x x x x x x

l l l l r l l

z x x x x x x T T I I F F

x x x x x x x

           

                   (9) 
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1 2

1 2

1 2

1 2 1 2 1 2 2

1 2 1 2 1 2 2

6 4 5, 2 8, 15, 17,

6 4 6, 2 10, 19, 21,

1.4,

0.6,

0.4,

0, 0, 0,

0 1,0 1,0 0 1,

3,

j j j
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x x x x x x x

T T

I I

F F

x x x x x

T I F

T I F

T

       

       

 

 

 

    

     

  

, .
j j j j

x x x x
F T I 

        

 

                    

Step 4: Using Matlab or any software, we can solve the optimal solution as follows: 

1

2

0,0,0;0.6,0.6,0.4 ,

0.75,1.25,1.5;0.8,0,0 ,

3,5,6;0.6,0.6,0.4 .

x

x

z

 

 

 

 

5. Conclusion  

In this paper, we proposed a new direct algorithm for solving the linear programming problems, including 

neutrosophic variables and the right-hand side. In the proposed model, we maximize the degrees of acceptance and 

minimize indeterminacy and rejection of objectives. Meantime, a numerical example was provided to show the 

efficiency of the proposed method and illustrate the solution process. The new model not only richens uncertain 

linear programming methods but also provides a new effective way for handling indeterminate optimization 

problems 
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