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Abstract 

Background and Objective: Electrocardiogram is commonly used as a diagnostic tool for 

the monitoring of cardiac health and the detection of possible heart diseases. However, the 

procedure followed for the diagnosis of heart abnormalities is time consuming and prone to 

human errors. Thus, the development of computer-aided techniques for the automatic 

analysis of electrocardiogram signals is of vital importance for the diagnosis and prevention of 

heart diseases. The most serious outcome of coronary heart disease is the myocardial 

infarction, i.e. the rapid and irreversible damage of cardiac muscles, which, if not diagnosed 

and treated in time, continues to damage further the myocardial structure and function. In this 

paper we propose a novel approach for the automatic detection and localization of myocardial 

infarction from multi-lead electrocardiogram signals. 

Methods: The proposed method initially reshapes the multidimensional signal into a third-

order tensor structure and subsequently extracts feature representations in both Euclidean 

and Grassmannian space. In addition, two different methods are proposed for the mapping of 

the two different feature representations into a common Hilbert space before the final 

classification of signals. The first approach is based on the mapping of both Grassmannian 

and Euclidean features in a Reproducing Kernel Hilbert Space (RKHS), while the second one 
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attempts to initially apply Vector of Locally Aggregated Descriptors (VLAD) encoding directly 

to Grassmann manifold and then concatenate the two VLAD representations. 

Results: For the evaluation of the proposed method, we have conducted extensive tests 

using a publicly available dataset, namely PTB Diagnostic ECG database, containing 549 

multi-lead ECG data recordings from 290 subjects and from different diagnostic classes. The 

method provides an excellent detection rate of 100%, and localization rate, i.e., 100% with the 

first fusion method and 99.7% with the second one.  

Conclusions: The Experimental results presented in this paper show the superiority of the 

proposed methodology against a number of state-of-the-art approaches. The main advantage 

of the proposed approach is that it exploits better the intercorrelations between signals of 

different ECG leads, by extracting feature representations that lie in different geometrical 

spaces and contain complementary information with regard to the dynamics of signals. 

Keywords: Electrocardiograms, Myocardial Infraction, Linear Dynamical Systems, 

Reproducing Kernel Hilbert Space  

1. Introduction 

Cardiovascular diseases (CVDs) are related to a number of factors preventing the flow of 

blood to heart or brain and are considered as the number one cause of death globally [1]. In 

severe conditions, deaths are due to the occlusion of the coronary artery caused by the 

rupturing of atherosclerotic plaques [2], something that constitutes the main pathogenesis for 

the majority of Myocardial Infarctions (MI). More specifically, the MI is one of the five main 

manifestations of coronary heart disease [1] and occurs when the blood flow decreases or 

stops to a part of the heart, causing damage to the heart muscle. Myocardial infarction can be 

recognized by clinical symptoms and features, including elevated values of biochemical 

markers (biomarkers) of myocardial necrosis and by imaging [3].  

 Recent advances in digital diagnostic technology can contribute significantly to the 

detection of even minor MI events of cardiac patients effectively. Towards this direction, 

electrocardiogram (ECG) is an important tool for doctors, providing vital information with 

regard to the function and rhythm of human heart [4]. ECG signals are used for the diagnosis 
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of cardiac symptoms and the detection of a variety of heart diseases like myocardial infarction 

(MI), cardiac dysrhythmias and pulmonary embolism. More specifically, MI produces changes 

in the ECG signal appearing T waves abnormally high, longer than normal QT intervals and 

abnormal elevation of ST segment [5]. As the nature and amplitude of P, Q, R, S, T waves in 

the ECG signals changes depending on the lead, the use of multiple ECG leads is required 

for an accurate analysis. Different types of MI can be observed in specific leads depending on 

the location of infarction in the myocardium. 

 Nowadays, to overcome time and reliable limitations of manual analysis of ECGs, 

several computer-aided signal processing methods have been proposed in order to detect 

and localize MI from ECG signals [6]. To accurately extract features from ECG signals many 

researchers have used discrete wavelet transform (DWT) techniques [7], [8], as DWT has 

been proved an efficient tool for the analysis of this kind of signals. More specifically, Zhao 

and Zhang [9] proposed the use of wavelet transform and support vector machines, while for 

the estimation of subtle changes of ECG signals, Jayachandran [10] utilized the 

multiresolution properties of DWT to identify characteristic points in ECG signal and computed 

the entropy in the wavelet domain. On the other hand, other researchers [11] have proposed 

the use of Fourier harmonic phases of the ECG data which is advantageous in terms of 

computational simplicity. 

 However, the majority of the aforementioned techniques is based on the analysis of 

single-lead ECGs instead of multi-lead ECG (MECG) signals. In [12], the authors presented 

an automatic detection and localization approach of myocardial infarction (MI) using K-

nearest neighbor (KNN) classifier. Specifically, time domain features of each beat in the ECG 

signal, which are indicative of MI, such as T wave amplitude, Q wave and ST level deviation 

are extracted from 12 leads ECG. In another research work, Sharma, et al. introduced a novel 

technique based on a multiscale energy and eigenspace (MEES) approach for the detection 

and localization of MI [13]. Furthermore, Padhy and Dandapat proposed a method for MI 

detection and localization where higher-order singular value decomposition was applied to a 

third-order MECG tensor for dimensionality reduction [14], while for the detection and 

localization of MI a multi-class SVM classifier was used.  
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Recently, deep learning networks have been employed in the automated 

classification of ECG signals and detection of numerous heart diseases [15], [16]. For MI 

detection, Acharya et al., [5] used a 11-layer deep CNN algorithm for the detection of MI using 

ECG multi-lead signals with and without noise. Furthermore, Liu, et al., [17] used a deep 

convolution neural network (CNN) using electrocardiogram (ECG) signal from the lead II and 

taking 3-second signal segments as input. Although these methods don’t rely on the 

extraction of handcrafted features, the training of complex deep learning networks requires 

the creation of large datasets for the accurate definition of their parameters. 

 In this paper, we propose a novel approach for MI detection and localization that 

exploits better the intercorrelations between signals of different ECG leads by extracting 

feature representations that lie in different geometrical spaces and contain complementary 

information with regard to the dynamics of signals. In addition, we propose two different fusion 

approaches for mapping the extracted feature representations into a common Hilbert space. 

More specifically, the contributions of this work can be summarized in the following aspects: 

 We introduce a novel methodology for automated myocardial infarction detection and 

localization, aiming to improve classification accuracy by fusing different feature 

representations with complementary information into a common Hilbert space. The 

proposed methodology has been benchmarked in a popular publicly available dataset 

with favorable results. 

 In order to exploit the hidden beat and lead correlations, we propose the modeling of 

multi-lead ECG signals through a higher-order Linear Dynamical System (LDS) and 

the projection of LDS parameters to a Grassmann manifold.  

 Moreover, we extract feature representations in the Euclidean space by encoding 

multi-lead ECG signals as vectors of locally aggregated descriptors (VLAD) after a 

dyadic discrete wavelet transform and a subsequent multiscale higher-order SVD 

analysis on sub-band tensors. 

 Finally, we propose two fusion approaches for mapping the extracted feature 

representations in a common Hilbert space. The first approach is based on the 

mapping of both Grassmannian and Euclidean features in a Reproducing Kernel 

Hilbert Space (RKHS), while the second one attempts to apply VLAD encoding 
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directly to Grassmann manifold and then concatenate the two VLAD representations. 

Both approaches are generic and can be easily applied to various application fields.  

The remainder of this paper is organized as follows: Section 2 presents the proposed 

methodology including data preprocessing, ECG signals modeling, fusion of feature 

representations and classification. Subsequently, the dataset and experimental results are 

discussed in Section 3, while finally conclusions are drawn in Section 4. 

 

Figure 1. – The proposed methodology. 

2. Methods 

The overall structure of the proposed methodology for the classification and localization of MI 

is shown in Figure 1. More specifically, multi-lead ECG signals are initial pre-processed and 

reshaped into a third-order tensor structure, while, subsequently, Euclidean and 

Grassmannian feature representations are extracted and fused in a common Hilbert space. In 

the case of Euclidean features, VLAD encoding is applied after a dyadic discrete wavelet 

transform and a subsequent multiscale higher-order SVD analysis on sub-band tensors. On 

the other hand, Grassmannian features, i.e., points on Grassmann manifold, are extracted by 

feeding the third-order tensor structure to a higher-order linear dynamical system. 

Pre-processing

Multi-lead ECGs 
signals

Tensor formation

Modeling through 
LDS

Wavelet 
transformation

Grassmannian 
Point(s)

Mode-n Singular 
Values

VLAD encoding 

Detection and localization of MI

Fusion in a Common 
Hilbert Space

Grassmannian 
subspace

Euclidean 
subspace



6 
 

Alternatively, we can also model the sub-band tensors of wavelet transform using higher-

order linear dynamical systems to create multiple Grassmannian subspaces (this issue is 

discussed in detail in section 2.4.2). In the last stage of the proposed approach, the two 

different feature representations are mapped into a common Hilbert space for the detection 

and localization of MI. 

2.1.  Data preprocessing and tensor ECG formation 

In this first preprocessing step, we attempt to bring the leads of ECG to their isoelectric levels 

by passing each ECG signal through a digital Butterworth high-pass filter with a cut-off 

frequency of 0.5 Hz, and a “Zero-phase forward and reverse digital filter”, as proposed in [18]. 

Additionally, R-peak detection and period normalization is performed, while subsequently 

each lead signal is segmented and normalized to the number of beat periods. After the 

preprocessing of the recorded signals, the multi-lead ECG data is reshaped into a third-order 

tensor structure. More specifically, this data is represented as 𝑌 ∈ ℝ𝑙×𝑏×𝑠, where the 

dimensions 𝑙, 𝑏, and 𝑠 are respectively the number of leads, heart beats, and consecutive 

samples of normalized heartbeat. The horizontal slices of 𝑌 represent each ECG lead, and 

each vector of a horizontal slice represents consecutive beats of a lead [14]. 

2.2.  Mapping of ECGs signals into Grassmann Manifold 

The output of an ECG signal indicates the electrical activity generated by the heart as a 

function of time and it is a near-periodic signal for a specific time. In a multi-lead ECG the 

leads refer to imaginary lines between two ECG electrodes. To exploit this information, in this 

paper we attempt to model the interdependent 12-lead signals and beats of ECGs using 

linear dynamical systems (LDSs). A linear dynamical system is associated with a first order 

ARMA process with white zero mean IID Gaussian input and for this reason LDSs are also 

known as linear Gaussian state-space models. In general, LDS models attempt to associate 

the output of the system, i.e., the observation, with a linear function of a state variable, while 

in each time instant, the state variable depends linearly on the state of the previous time 

instant. Both state and output noise are zero-mean normally distributed random variables and 

apart from the output of the system, all other variables (state and noise variables) are 

hidden. The adopted system is described by the following equations: 
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 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑣(𝑡) (1) 

 𝑦(𝑡) = 𝑦̅ + 𝐶𝑥(𝑡) + 𝑤(𝑡) (2) 

where 𝑥 ∈ 𝑅𝑛 is the hidden state process, 𝑦 ∈ ℝ𝑑 is the observed data,  𝐴 ∈ ℝ𝑛×𝑛 is the 

transition matrix of the hidden state and 𝐶 ∈ ℝ𝑑×𝑛 is the mapping matrix of the hidden state to 

the output of the system. The quantities 𝑤(𝑡) and 𝐵𝑣(𝑡) are the measurement and process 

noise respectively, with 𝑤(𝑡)~𝑁(𝑂, 𝑅) and 𝐵𝑣(𝑡)~𝑁(0, 𝑄), while 𝑦̅ ∈ ℝ𝑑 is the mean value of 

the observation data. The extracted tuple LDS descriptor, 𝑀 = (𝐴, 𝐶), models both the 

appearance and dynamics of the observation data, represented by 𝐶 and 𝐴, respectively. The 

descriptor’s parameters, 𝐴 and 𝐶, can be estimated through a suboptimal method initially 

proposed by Doretto et. al [19].  

 However, in our case the multi-lead ECG signal is represented by the third-order 

tensor 𝑌. To this end, we decompose the ECG formation 𝑌 using a higher order singular 

value decomposition: 

 𝑌 = 𝑆 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3) (3) 

where 𝑆 ∈ ℝ𝑙×𝑏×𝑠 is the core tensor, while 𝑈(1) ∈ ℝ
𝑙×𝑙, 𝑈(2) ∈ ℝ

𝑏×𝑏 and 𝑈(3) ∈ ℝ
𝑠×𝑠 are 

orthogonal matrices containing the orthonormal vectors spanning the column space of the 

matrix and ×𝑗 denotes the 𝑗-mode product between a tensor and a matrix. Since the columns 

of the mapping matrix 𝐶 of the stochastic process need to be orthonormal, we can consider 

𝐶 = 𝑈(3) and 

 𝑋 = 𝑆 ×1 𝑈(1) ×2 𝑈(2) (4) 

Then, the transition matrix A can be estimated using least squares [20] as follows: 

 𝐴 = 𝑋2𝑋1
𝑇(𝑋1𝑋1

𝑇)−1 (5) 

where 𝑋1 = [𝑥(2), 𝑥(3), … , 𝑥(𝑡)] and 𝑋2 = [𝑥(1), 𝑥(2), … , 𝑥(𝑡 − 1)].  

 Furthermore, to improve the stability of the dynamical system (i.e., to estimate the 

stabilized transition matrix 𝐴), we obtain an approximate solution, based on a convex 

optimization technique [21], by solving the following quadratic problem: 

 minimize 𝑎𝑃𝑎 − 2𝑞𝑇𝑎 + 𝑟 (6)  

 subject to 𝑔𝑇𝑎 ≤ 1 (7) 
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where 𝑎 = 𝑣𝑒𝑐(𝐴), 𝑞 = 𝑣𝑒𝑐(𝑋1𝑋2
𝑇), 𝑟 = 𝑡𝑟(𝑋2

𝑇𝑋2) and 𝑃 = 𝐼 ⊗ (𝑋1
𝑇𝑋1), 𝐼 is the identity 

matrix, 𝑡𝑟(∙) indicates the trace of a matrix and 𝑣𝑒𝑐(∙) operator converts a matrix to vector and 

⊗ denotes the Kronecker product. Also, 𝑔 = 𝑣𝑒𝑐(𝑢1𝑣1
𝑇) where vectors 𝑢1 and 𝑣1

𝑇 correspond 

to the first eigenvalue of the transition matrix 𝐴.  

 Having modeled each ECG signal using a higher-order linear dynamical system 

approach, our next step is to represent the parameters of each dynamical system, 𝑀 = (𝐴, 𝐶), 

as a point on the space of the extracted descriptors. Towards this end, we initially estimate 

the finite observability matrix of each dynamical system, 𝑂𝑚
𝑇 (𝑀) =

[𝐶𝑇 , (𝐶𝐴)𝑇 , (𝐶𝐴2)𝑇 , … , , (𝐶𝐴𝑚−1)𝑇] and then, we apply a Gram-Schmidt othonormalization [22] 

procedure, i.e., 𝑂𝑚
𝑇 = 𝐺𝑅, in order to represent each descriptor 𝑀 as a point, 𝐺 ∈ ℝ𝑚×T×3, on 

the Grassmann manifold (in our experiments we set the size 𝑚 of the observability matrix 

equal to 3, while T is the number of samples). 

2.3.  Modelling of ECG signal using locally aggregated descriptors 

In this section, we propose the representation of ECG signals, i.e., the third-order tensor 𝑌, as 

a Vector of Locally Aggregated Descriptors (VLAD). The extracted VLAD descriptor can be 

considered intrinsically as Euclidean, as it encodes the features’ distribution in their native 

vector space. More specifically, we initially apply a dyadic discrete Wavelet Transform (with 

Daubechies 9/7 Biorthogonal wavelet filters as mother wavelet) on every vector 𝑌(𝑖, 𝑗, : ) of the 

tensor 𝑌 ∈ ℝ𝑙×𝑏×𝑠 where 𝑖 = 1,… , 𝑙 and 𝑗 = 1,… , 𝑏. This transformation results 2 × 𝐿 sub-band 

tensors (𝐿 is the number of levels and depends on the sampling frequency of the signal) 

comprising of one approximation 𝐴𝐿 ∈ 𝑟
𝑙×𝑏×𝑠𝐴, with 𝑠𝐴 = 𝑠/2^𝐿, and 𝐿 number of details 𝐷𝑘 

(where 𝑘 = 1,… , 𝐿) sub-band tensors with dimensions 𝑙 × 𝑏 × 𝑠𝑘 , with 𝑠𝑘 = 𝑠/2^𝑘 [14]. 

Subsequently, each sub-band tensor is decomposed according to equation (3) and a feature 

vector is formed by the concatenation of mode-𝑛 singular values σ (in our case 𝑛 is equal to 

3) of all extracted core tensors S. In particular, for the 3 modes of each sub-band tensor 𝐴𝐿 

and 𝐷𝑘, we form the corresponding feature vectors:  

 𝑥𝐿
𝐴 = [𝜎1

(1)
, … , 𝜎𝑙

(1), 𝜎1
(2), … , 𝜎𝑏

(2), … , 𝜎1
(3)
, … , 𝜎𝑠𝐴

(3)  ], (8) 

and 
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 𝑦𝑘
𝐷 = [𝜎̂1

(1)
, … 𝜎̂l

(1), 𝜎̂1
(2), … 𝜎̂b

(2)  … , 𝜎̂1
(3), … 𝜎̂𝑠𝑘

(3) ], (9) 

and then, we concatenate the individual features to form the final feature vector as follows:  

 𝑣 = [𝑥L
𝐴, 𝑦L,

𝐷 , 𝑦𝐿−1
𝐷 , … , 𝑦1

𝐷] (10) 

In our experiments we extracted the singular values of sub-band tensors 𝐴7, 𝐷7, 𝐷6, 𝐷5 and 

𝐷4 and used the first three singular values of each unfolded submatrix for the construction of 

feature vectors in equations (8) and (9). These sub-bands contain ‘PQRST’ segmented 

information, while the rest do not contain any meaningful information [14]. 

 Finally, for the modelling of each ECG signal, we apply VLAD encoding, which is 

considered as a simplified coding scheme of the earlier Fisher Vector (FV) representation and 

has shown to outperform histogram representations in bag of features approaches [23], [24]. 

More specifically, we consider a codebook, {𝑚𝑖}𝑖=1
𝑟 = {𝑚1, 𝑚2, … ,𝑚𝑟}, with 𝑟 visual words and 

local descriptors 𝑣, where each descriptor is associated to its nearest codeword 𝑚𝑖 = 𝑁𝑁(𝑣𝑗). 

The VLAD descriptor, 𝑉, is created by concatenating the 𝑟 local difference vectors {𝑢𝑖}𝑖=1
𝑟  

corresponding to differences 𝑣𝑗 −𝑚𝑖, with 𝑚𝑖 = 𝑁𝑁(𝑣𝑗), where 𝑣𝑗 are the descriptors 

associated with codeword 𝑖, with 𝑖 = 1,… , 𝑟. 

 𝑉̅ = {𝑢𝑖}𝑖=1
𝑟 = {𝑢1, … , 𝑢𝑟} (11) 

or  

𝑉̅ =

{
 
 

 
 

∑ (𝑣𝑗 −𝑚1 )
𝑣𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

 𝑚1=𝑁𝑁(𝑣𝑗)

, … , ∑ (𝑣𝑗 −𝑚𝑟 )
𝑣𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

 𝑚𝑟=𝑁𝑁(𝑣𝑗) }
 
 

 
 

 (12) 

while the final VLAD representation is determined by the L2-normalization of vector 𝑉̅:  

 𝑉̅𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = 𝑉̅/‖𝑉̅‖2   (13) 

2.4.  Fusion of feature representations in a common space 

2.4.1. Fusion through the mapping of data in a Reproducing Kernel Hilbert Space 

To fuse the extracted feature representations, we propose in this section their mapping into a 

common Hilbert space 𝐻 (it is defined as proposed-1). Our main problem here stems from the 

fact that the two feature representations, i.e., Grassmannian points and VLAD encodings, lie 

in different geometrical spaces. More specifically, in the first case we have points in the non-
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Euclidean space of the dynamical model, known as Grassmann manifold, which is a quotient 

of the special orthogonal group SO(n), i.e., the subset of all orthogonal matrices with 

determinant equal to +1 (this simply means that we can extend the notion of tangent spaces, 

geodesics etc. from the base manifold SO(n) to the quotient space of Grassmann manifold). 

On the other hand, the second feature representation is a VLAD descriptor, which lies in 

Euclidean space (Figure 2). 

 To address the problem, we attempt to transform the two feature representations into 

a common Hilbert space using two kernel functions, 𝜑𝐺: 𝐺 → 𝐻 for the Grassmann manifold 

and 𝜑𝐸 : ℝ
𝑟 →𝐻  for the Euclidean space. In the first case, the Grassmannian kernel 

𝑘𝐺(𝑔1, 𝑔2), which shows the similiarity between two Grassmannian points 𝑔1 and 𝑔2 is 

estimated using the inverse exponential map on the Grassmann manifold: 

 𝑘𝐺(𝑔1, 𝑔2) = 𝑑𝐺(𝑔1, 𝑔2) = ‖𝑒𝑥𝑝𝑔2
−1𝑔1‖𝐹

 (14) 

where ‖∙‖𝐹 is the matrix Frobenius norm. For estimating the inverse exponential map, we first 

need to compute the orthogonal completion 𝑂𝑟 of 𝑔1and then the thin CS decomposition of 

matrix 𝑂𝑟
𝑇𝑔2 to find the direction matrix that specifies the direction and speed of geodesic flow 

[25]. On the other hand, for the Euclidean space, we can simply apply a Radial Basis 

Function (RBF) kernel for two feature vectors 𝑥1 and 𝑥2: 

 𝑘𝐸(𝑥1, 𝑥2) = 𝑒𝑥𝑝 (−
‖𝑥1−𝑥2‖

2

2𝜎2
)  (15) 

Using equations (14) and (15) as similarity metrics in Grassmannian and Euclidean space 

respectively, we can easily estimate the elements of kernel matrices 𝐾𝐺  and 𝐾𝐸 . To improve 

the robustness and the discriminative ability of the method, we create kernels of equal size, 

i.e., 𝐾𝐺 , 𝐾𝐸 ∈ ℝ
𝑀𝑥𝑀, with 𝑀 = 𝑘 ∗ 𝑐, where c is the number of classes, while 𝑘 is the number of 

the most representative samples in each class. For the Euclidean space, we apply a simple k-

means algorithm, while for the Grassmannian manifold, we select the most representative 

Grassmannian Points, using as a distance between two points on the manifold, the similarity 

metric of equation (14). To this end, we apply a k-medoids classification approach considering 

as medoid, the local minimizer of function F: 

 𝐹(𝑚𝑘) =
1

𝑛𝐺
∑ 𝑑𝐺(𝑚𝑘
𝑛𝐺
𝑖=1 ,  𝑔𝑖) (16) 
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where 𝑛𝐺 indicates the total number of Grassmannian points 𝑔𝑖 in a medoid 𝑚𝑘 and 𝑑𝐺(∙) 

denotes the distance between two Grassmannian points (see equation (14)). Having defined 

the 𝑀 most representative Grassmannian points among the existing ones, we estimate the 

Grassmannian kernel matrix as 𝐾𝐺𝑖,𝑗 = 𝑘𝐺(𝑔𝑖 , 𝑔𝑗), with 𝑖, 𝑗 = 1,2, …𝑀. Similarly, each element 

of the Euclidean kernel matrix is defined as 𝐾𝐸𝑖,𝑗 = 𝑘𝐸(𝑥𝑖 , 𝑥𝑗) for each 𝑖, 𝑗 ∈ [1,𝑀]. 

Subsequently, we estimate the common kernel matrix for the two subspaces as 𝐾𝐸𝐺 = 𝐾𝐸°𝐾𝐺 , 

where 𝐾𝐸𝐺 ∈ ℝ
𝑀𝑥𝑀 and 〈°〉 is the Handamard product of kernel functions.        

Finally, to classify the ECG signals we apply a sparse representation using the 

following equation according to [26], which enables us to map the input signal 𝑦 to the Hilbert 

space of a sparse representation 𝑎𝑠: 

 min
𝑎
‖𝑦 − 𝑎𝑠𝐶‖2

2 + 𝜆‖𝑎𝑠‖1 (17) 

where y = 𝛴1/2𝑈𝑇𝐾𝐸𝐺  and C = 𝛴1/2𝑈𝑇, with 𝑈𝛴𝑉 = 𝐾𝐸𝐺 [27].  

 For the detection and localization of MI, ECG signals corresponding to myocardial 

infarction cases were initially discriminated from those of health controls and then they were 

classified in the following categories: anterior (AMI), antero-lateral (ALMI), antero-septal 

(ASMI), inferior (IMI) and infero-lateral (ILMI). To this end, each ECG signal represented by a 

set of sparse coefficients is classified to a class 𝑖 = 1…𝑁, whose training samples provide the 

best reconstruction of it. Specifically, the classification is performed by assigning each multi-

lead ECG signal 𝑥 to the class minimizing the following residual: 

 Class(i)= 𝑎𝑟𝑔min
𝑖
‖𝑥 − 𝛿𝑖(𝑎𝑠)𝐶‖ (18) 

where  𝛿𝑖 sets to zero the coefficients of 𝑎𝑠 that do not correspond to class 𝑖. The estimation 

of the sparse representations of ECG signals is achieved using the SPAMS toolbox of Matlab. 
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Figure 2. Detection accuracy rates for proposed-1 fusion approach using different kernel functions for 

mapping Euclidean data into a common Hilbert space 

2.4.2. Fusion in a Hilbert space through VLAD encoding 

In this second fusion approach, we attempt to apply VLAD encoding on Grassmann manifold, 

as in the case of the Euclidean space, and then concatenate the two VLAD representations to 

form a joint representation for the two spaces (it is defined as proposed-2). In other words, we 

use VLAD encoding as a means to map our features into a common space.  

In contrast with the previous approach, in this case, we divide each signal into 

overlapping equally-sized elementary signals (using a sliding window of a constant size W) 

that are modeled by a linear dynamical system. In this way, each ECG signal is finally 

represented as a set of points on the Grassmann manifold instead of a single point. 

Subsequently, we apply a Karcher mean algorithm [28] to estimate the codewords 𝑚𝑖  in 

equation (12). We re-identify the members 𝐺𝑗 of each class, i.e., 𝑚𝑖 = 𝑁𝑁(𝐺𝑗), using the 

dissimilarity metric defined in equation (14). Hence, the VLAD encoding of an ECG signal on 

the Grassmann manifold for a codebook of q representative words, {𝑚𝑖}𝑖=1
𝑞

, can be defined 

as:  

𝑉̅𝐺𝑟𝑎𝑠𝑠𝑚𝑎𝑛𝑛𝑖𝑎𝑛 =
𝑉̅

‖𝑉̅‖2
= 

LDS modeling
Wavelet 

Transformation
Mode-n singular values

VLAD encoding

Grassmannian 
subspace

Euclidean subspace

Reproducing kernel 
Hilbert space

Sparse coding

MI Detection / Localization

φG:G   H

φE:R
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=
1

‖𝑉̅‖

{
 
 

 
 

∑ ‖𝑒𝑥𝑝𝑚1
−1𝐺𝑗‖𝐹

𝐺𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝑡ℎ𝑒 𝐾𝑎𝑟𝑐𝑒𝑟 𝑚𝑒𝑎𝑛
 𝑚1=𝑁𝑁(𝐺𝑗)

, … , ∑ ‖𝑒𝑥𝑝𝑚𝑞
−1𝐺𝑗‖

𝐹
𝐺𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝑡ℎ𝑒 𝐾𝑎𝑟𝑐𝑒𝑟 𝑚𝑒𝑎𝑛
 𝑚𝑞=𝑁𝑁(𝐺𝑗) }

 
 

 
 

 (19) 

For the final classification of an ECG signal to one of the five classes (localization), i.e., 

anterior (AMI), antero-lateral (ALMI), antero-septal (ASMI), inferior (IMI) and infero-lateral 

(ILMI), we concatenate the two VLAD encodings, i.e.,  𝑉̅𝐸𝐶𝐺 = [𝑉̅𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛   𝑉̅𝐺𝑟𝑎𝑠𝑠𝑚𝑎𝑛𝑛𝑖𝑎𝑛], to 

form a joint feature representation and finally use a simple SVM classifier. We have to note 

here that when sub-band tensors of wavelet transform are modeled using higher-order linear 

dynamical systems, the system creates multiple Grassmannian subspaces. In our 

experiments, we used in total five sub-bands, A7, D4, D5, D6 and D7 and therefore in this case 

the final vector 𝑉̅𝐸𝐶𝐺  was produced by the concatenation of one Euclidean with six 

Grassmannian feature representations, i.e.,  𝑉̅𝐸𝐶𝐺 = [𝑉̅𝐸  𝑉̅𝐺   𝑉̅𝐺
𝐴7  𝑉̅𝐺

𝐷4 … 𝑉̅𝐺
𝐷7]. 

3. Results 

For the evaluation of the proposed method we conducted extensive tests using a publicly 

available dataset, namely PTB Diagnostic ECG database [29], containing multi-lead ECG 

data. Each record in the dataset includes 15 simultaneously measured signals, i.e., the 

conventional 12 leads as shown in Figure 3 (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) 

together with the 3 Frank lead ECGs (vx, vy, vz) (in our experiments the 3 Frank lead ECGs 

were not used, Figure 3). Figure 4 shows a 3D representation of a beat period of an ECG 

signal of the PTB Diagnostic database. Each signal is digitized at 1000 samples per second. 

More specifically, the dataset contains in total 549 records of 290 subjects from different 

diagnostic classes: Myocardial infarction (148), Cardiomyopathy/Heart failure (18), Bundle 

branch block (15), Dysrhythmia (14), Myocardial hypertrophy (7), Valvular heart disease (6), 

Myocarditis (4), Miscellaneous (4), Healthy controls (52). In the case of MI patients, the 

location of the infarction in the myocardium is classified in different categories [30]. 

Nevertheless, in our experiments five groups of these have been considered (anterior (AMI), 

antero-lateral (ALMI), antero-septal (ASMI), inferior (IMI) and infero-lateral (ILMI)).  The 

records of these categories are 47 from AMI, 43 from ALMI, 77 from ASMI, 89 from IMI and 
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56 from ILMI. The other 56 records from MI subjects correspond to other groups of MI 

location, but these groups have a very limited number of ECG records to be used for training 

the classifier.  

The goal of this experimental evaluation is three-fold. Firstly, we aim to define the 

optimal parameters for the two proposed fusion approaches. Secondly, a detailed 

experimental evaluation for the contribution of each extracted feature and fusion approach is 

performed estimating the MI detection and localization rates. Finally, in order to validate the 

efficiency of the proposed method, we compared its detection and localization rates with 

those of various state-of-the-art approaches using the same dataset.  

 

Figure 3. The 12 leads of an ECG signal of the PTB Diagnostic database 

i
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v6
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Figure 4. A beat period of an ECG signal of the PTB Diagnostic database 

3.1.  Estimating the optimal parameters 

The first evaluation phase concerns the selection of the optimal parameters for both fusion 

approaches in order to achieve the best detection rates. Initially, we carried out experiments 

in order to define the most appropriate kernel function for the mapping of Euclidean data into 

the Reproducing Kernel Hilbert Space (proposed-1 approach). In particular, we experimented 

using three kernel functions, namely radial basis function (RBF), polynomial and exponential 

chi-square distance. Figure 5 presents the classification rates for each kernel function when 

they are applied for the mapping of Euclidean data into a common Hilbert Space. As we can 

easily see, the best classification rate (100%) is achieved by using the RBF kernel function, 

while the polynomial and chi-square kernels provide lower detection rates of 99.6% and 

93.8%, respectively. 

 
Figure 5. Detection accuracy rates for proposed-1 fusion approach using different kernel functions for 

mapping Euclidean data into a common Hilbert space 

 On the other hand, for the second fusion approach (proposed-2), we attempt to find 

the most appropriate sliding window size W for dividing the multi-dimensional signal into 

mV
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16 
 

overlapping equally sized elementary signals. This approach allows us to represent each 

signal as a set of points on the Grassmann manifold instead of a single point. Towards this 

end, we carried out experiments using five different window sizes (5, 10, 15, 20 and 25 

length) for creating the elementary equally sized signals. As seen in Figure 6, the best 

classification rate is achieved by setting the window size equal to 20, yielding a detection rate 

of 95.83% (this detection rate refers to the VLAD encoding 𝑉̅𝐺 and not to the concatenated 

𝑉̅𝐸𝐶𝐺  vector). It is worth mentioning that when small signal sizes are used, the detection rates 

decrease, apparently due to the lack of sufficient information in each sub-signal, while the 

detection rate for signal sizes larger than 20 also seems to decrease. 

 
Figure 6. Detection rates of Grassmann VLAD encoding 𝑉̅𝐺   (proposed-2 approach) using different 

window sizes W. 

3.2.  Contribution of different feature representations to the detection of myocardial 

infraction 

In this subsection, we elaborate a more detailed analysis in order to evaluate the contribution 

of different feature representations to the MI detection process. Specifically, we analyze the 

contribution of four different feature representations: a) The representation of ECG signal as a 

single Grassmann point (proposed-1 approach). b) The VLAD encoding representation 𝑉̅𝐸 of 

the ECG signal after the dyadic discrete wavelet transform and the subsequent multiscale 

higher-order SVD analysis on sub-band tensors (proposed-1 and proposed-2 approach). c) 

The VLAD encoding representation on the Grassmann manifold (proposed-2 approach) using 

a single Grassmann subspace i.e., 𝑉̅𝐺 and d) The concatenated VLAD encoding 

representation of the five sub-bands, A7, D4, D5, D6 and D7 (proposed-2 approach). 
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For the classification of the ECG signals, in the first case, i.e., Grassmannian 

subspace, we used as a similarity metric the distance between two Grassmannian points, as 

defined in equation (14), while in the cases of VLAD encodings we used a standard SVM 

classifier. The experimental results in Figure 7 show that VLAD encoding on Grassmann 

manifold, i.e., 𝑉̅𝐺, achieves the best results, with a detection rate of 95.8% against 94.6%, 

92.3% and 91.3% for the VLAD encoding representation 𝑉̅𝐸, the Grassmann feature 

representation and the concatenated VLAD vector, respectively. In the next section, we show 

that by mapping these features to a common Hilbert space, we can further improve the 

classification accuracy of individual features.  

 

Figure 7. MI detection rates for the individual feature representations. 

3.3.  Comparison of fusion approaches 

In this subsection, we aim to evaluate the effect of the two proposed fusion approaches to the 

detection and localization of MI. In the first approach (proposed-1), we use kernel functions to 

map the Grassmann feature representation and VLAD encoding 𝑉̅𝐸 into a common Hilbert 

space and then apply sparse coding, while for the second approach (proposed-2) we create 

two concatenated VLAD vectors 𝑉̅𝐸𝐶𝐺 = [𝑉̅𝐸  𝑉̅𝐺   𝑉̅𝐺
𝐴7  𝑉̅𝐺

𝐷4 … 𝑉̅𝐺
𝐷7] and 𝑉̅𝐸𝐶𝐺 = [𝑉̅𝐸  𝑉̅𝐺] and use a 

standard SVM classifier.  
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 As we can see in Figure 8, all approaches provide excellent detection rates and can 

easily distinguish MI cases from those of healthy controls. Additionally, considering the five 

types of MI, namely AMI, ALMI, ASMI, IMI and ILMI, the localization rates are 100%, 99.7% 

and 98.4% for proposed-1, proposed-2 with 𝑉̅𝐸𝐶𝐺 = [𝑉̅𝐸  𝑉̅𝐺   𝑉̅𝐺
𝐴7  𝑉̅𝐺

𝐷4 … 𝑉̅𝐺
𝐷7] and proposed-2 

with 𝑉̅𝐸𝐶𝐺 = [𝑉̅𝐸  𝑉̅𝐺], respectively. It is also worth mentioning that although the feature 

representation of VLAD encoding 𝑉̅𝐺 on Grassmann manifold provides better results than a 

simple Grassmann feature, the fusion through a Reproducing Kernel Hilbert Space achieves 

better results in the case of localization. In addition, the accuracy rates of both approaches in 

Figure 8 make evident that the individual feature representations contain complementary 

information and therefore the detection accuracy after fusion is increased. 

 
Figure 8. Detection and localization accuracy rates using the proposed fusion schemes 

3.4.  Comparison with state-of-the-art approaches 

In this last section, we present a comparative analysis of the proposed method against a 

number of state-of-the-art approaches. More specifically, we compare the Sensitivity, 

Specificity and Accuracy rates of the proposed method (Table I) against those of ten state-of-

the-art approaches that have been used in the past for the detection and localization of MI on 

PTB Diagnostic ECG database.  

 To ensure a fair comparison, we adopted the same experimental protocol followed in 

[14]. The experimental results in Table I show that the proposed method (both proposed-1 

and proposed-2 approaches) outperform all other methods achieving improvements up to 
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0.7% in detection accuracy from [17] and up to 1.9%, 1.3%, 0.4% and 1.2% in localization 

accuracies from [14], [31], [13] and [12], respectively. 

TABLE I. Detection and localization comparison results 
 Detection Localization 

 Sen Spe Acc Acc 

Proposed-1 100% 100% 100% 100% 

Proposed-2 100% 100% 100% 99.7% 

Liu et al. (2018) - [17] 99.8% 97.4% 99.3% NA 

Acharya et al. (2017) - [5] 95.5% 94.2% 95.2% NA 

Padhy et al. (2017) - [14] 94.6% 96% 95.3% 98.1% 

Sadhukhan et al. (2017) - [11] 98.2% 97.4% 97.4% NA 

Acharya et al. (2016) - [31] 99.5% 96.3% 98.8% 98.7% 

Sharma et al. (2015) - [13] 93% 99% 96% 99.6% 

Arif et al. (2012) - [12] 99.97% 99.9% NA 98.8% 

Sun et al. (2012) - [3] 92.6% 82.4% NA 76.6% 

Jayachandran et al. (2010) - [10] NA NA 95.9% NA 

Nugent et al. (2000) - [32] 78% 97.3% NA NA 

 

4. Discussion 

The method of 12-lead simultaneous recording of electrocardiographs allows the capturing of 

the ECG signal of the same cardiac cycle on 12 leads at the same time. This approach can 

significantly increase the accuracy of all measurements and reduce the variability of ECG 

measurement [33]. In a multi-lead ECG, the leads refer to imaginary lines between two ECG 

electrodes. To exploit this information and better model possible beat and lead correlations, 

we use a third-order tensor structure and then we attempt to extract different feature 

representations containing complementary information with regard to the dynamics of ECG 

signals. This fact justifies the superiority of the proposed method against all other state of the 

art approaches in Table I. While discrete wavelet transform has been widely used in the past 

for modeling ECG signals, to the best of our knowledge this is the first time that linear 

dynamical systems, and their projection to Grassmann manifold, are used for the modeling of 

such data. Linear dynamical systems have shown great ability to model dynamical information 

in video sequences [34], while recently they have been used for the extension of residual 

networks, i.e., ResNets, and the improvement of Faster-CNN network's accuracy in object 

detection applications [35]. The experimental results in Figure 8 show that the combination of 

LDS descriptors with those extracted from DWT increases significantly the detection rates of 

individual feature representations presented in Figure 7. 
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 While both fusion approaches outperform all other state of the art approaches in 

Table 1, we can notice that the first approach, based on the mapping of both Grassmannian 

and Euclidean features in a Reproducing Kernel Hilbert Space, provides excellent results in 

both cases, i.e., detection and localization. In other words, even when the number of classes 

increases in the case of localization, the discrimination ability of the method remains 

extremely high, i.e., localization accuracy 100% for proposed-1 against that of 99.7% for 

proposed-2. This is mainly because in the case of VLAD encoding, we mostly keep a 

statistical information associated with the spatial distribution of descriptors in the geometrical 

subspaces, while in the case of mapping of feature representations in a Reproducing Kernel 

Hilbert Space, we are able to better maintain the dynamics and appearance information of the 

signals encoded in the descriptors. We have to notice that both approaches proposed in the 

paper are generic and can be easily applied to other application fields, where the fusion of 

feature representations that belong to different geometrical subspaces and are extracted from 

either shallow or deep classifiers is required.  

5. Conclusions 

In this paper, we presented a novel methodology for assisting doctors in detection and 

localization of MI. The main advantage of the proposed approach is that it exploits better the 

intercorrelations between signals of different ECG leads by extracting feature representations 

that lie in different geometrical spaces and contain complementary information with regard to 

the dynamics of signals. More specifically, we initially reshape the multidimensional signal into 

a third-order tensor structure and subsequently extract feature representations in both 

Euclidean and Grassmannian spaces. Moreover, two different methods are proposed for the 

mapping of two different feature representations into a common Hilbert space before the final 

classification of signals. The first approach is based on the mapping of both Grassmannian 

and Euclidean features in a Reproducing Kernel Hilbert Space (RKHS), while the second one 

attempts to apply VLAD encoding directly to Grassmann manifold and then concatenate the 

two VLAD representations. The experimental results showed that the proposed method 

improved significantly the performance of the automated computer-based detection and 

localization of MI. In the future, more data will be collected in order to assess the 
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effectiveness of the proposed methodology. Finally, we aim to extend and apply the proposed 

methodology to other application fields, using different types of signals e.g. EEG or EMG, in 

order to provide a generalized automated electrodiagnostic tool. 

6. Acknowledgement 

The research leading to these results has received funding from EC under grant agreement 

no. H2020-690494 “i-PROGNOSIS”. 

7. Conflict of Interest Statement 

We declare that we have no financial and personal relationships with other people or 

organizations that can inappropriately influence our work, there is no professional or other 

personal interest of any nature or kind in any product, service and/or company that could be 

construed as influencing the position presented in, or the review of, the manuscript entitled, 

“Multi-lead ECG Signal Analysis for Myocardial Infarction Detection and Localization through 

the Mapping of Grassmannian and Euclidean Features into a Common Hilbert Space”. 

8. References 

[1] World Health Organization, Cardiovascular diseases (CVDs). http://www.who.int/news-room/fact-

sheets/detail/cardiovascular-diseases-(cvds)/, (2018) (accessed 14 June 2018). 

[2] National Heart, Lung, and Blood Institute, What is a Heart Attack. 

https://www.nhlbi.nih.gov/health/health-topics/topics/heartattack/, (2018) (accessed 2 July 2018). 

[3] L. Sun, Y. Lu, K., Yang, S. Li, ECG analysis using multiple instance learning for myocardial 

infarction detection, IEEE transactions on biomedical engineering, 59 (12) (2012) 3348-3356. 

https://doi.org/10.1109/TBME.2012.2213597 

[4] E.J.D.S. Luz, W. R. Schwartz, G. Cámara-Chávez, D. Menotti, ECG-based heartbeat classification 

for arrhythmia detection: A survey. Computer methods and programs in biomedicine, 127 (2016) 

144-164. https://doi.org/10.1016/j.cmpb.2015.12.008 

[5] U.R. Acharya, H. Fujita, S.L. Oh, Y. Hagiwara, J.H. Tan, M. Adam, Application of deep 

convolutional neural network for automated detection of myocardial infarction using ECG signals, 

Information Sciences, 415 (2017) 190-198. https://doi.org/10.1016/j.ins.2017.06.027 

http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
http://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)


22 
 

[6] O. Faust, U.R. Acharya, T. Tamura, Formal design methods for reliable computer-aided diagnosis: 

a review, IEEE reviews in biomedical engineering, 5 (2012) 15-28. 

https://doi.org/10.1109/RBME.2012.2184750 

[7] D. Giri, U.R. Acharya, R.J. Martis, S.V. Sree, T.C. Lim, T.A. VI, J.S. Suri, Automated diagnosis of 

coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet 

transform, Knowledge-Based Systems, 37 (2013) 274-282. 

https://doi.org/10.1109/RBME.2012.2184750 

[8] M. Kumar, R.B. Pachori, U.R. Acharya, An efficient automated technique for CAD diagnosis using 

flexible analytic wavelet transform and entropy features extracted from HRV signals, Expert 

Systems with Applications, 63 (2016) 165-172. https://doi.org/10.1016/j.eswa.2016.06.038 

[9] Q. Zhao, L. Zhang, ECG feature extraction and classification using wavelet transform and support 

vector machines, in: Proceedings of the IEEE International Conference on Neural Networks and 

Brain, 2, (2005), pp. 1089-1092. https://doi.org/10.1109/ICNNB.2005.1614807 

[10] E.S. Jayachandran, Analysis of myocardial infarction using discrete wavelet transform, Journal of 

medical systems, 34 (6) (2010) 985-992. https://doi.org/10.1007/s10916-009-9314-5 

[11] D. Sadhukhan, S. Pal, M. Mitra, Automated ECG analysis using Fourier harmonic phase, in: 

Proceedings of the IEEE Region 10 Symposium (TENSYMP), 2017, pp. 1-5. 

https://doi.org/10.1109/TENCONSpring.2017.8070022 

[12] M. Arif, I.A. Malagore, F.A. Afsar, Detection and localization of myocardial infarction using k-

nearest neighbor classifier, Journal of medical systems, 36 (1) (2012) 279-289. 

https://doi.org/10.1007/s10916-010-9474-3 

[13] L.N. Sharma, R.K. Tripathy, S. Dandapat, Multiscale energy and eigenspace approach to detection 

and localization of myocardial infarction, IEEE transactions on biomedical engineering, 62 (7) 

(2015) 1827-1837. https://doi.org/10.1109/TBME.2015.2405134 

[14] S. Padhy, S. Dandapat, Third-order tensor based analysis of multilead ECG for classification of 

myocardial infarction, Biomedical Signal Processing and Control, 31 (2017) 71-78. 

https://doi.org/10.1016/j.bspc.2016.07.007 

[15] S. Kiranyaz, T. Ince, M. Gabbouj, Real-time patient-specific ECG classification by 1-D 

convolutional neural networks, IEEE Transactions on Biomedical Engineering, 63 (3) (2016) 664-

675. https://doi.org/10.1109/TBME.2015.2468589 

[16] M. Zubair, J. Kim, C. Yoon, An automated ECG beat classification system using convolutional 

neural networks, in: Proceedings of the sixth IEEE International Conference on IT Convergence 

and Security (ICITCS), (2016), pp. 1-5. https://doi.org/10.1109/ICITCS.2016.7740310 



23 
 

[17] N. Liu, L. Wang, Q. Chang, Y. Xing, X. Zhou, A Simple and Effective Method for Detecting 

Myocardial Infarction Based on Deep Convolutional Neural Network, Journal of Medical Imaging 

and Health Informatics, 8 (7) (2018) 1508-1512. https://doi.org/10.1166/jmihi.2018.2463 

[18] S. Padhy, L.N. Sharma, S. Dandapat, Multilead ECG data compression using SVD in 

multiresolution domain, Biomedical signal processing and control, 23 (2016) 10-18. 

https://doi.org/10.1016/j.bspc.2015.06.012 

[19] G. Doretto, A. Chiuso, Y.N. Wu, S. Soatto, Dynamic textures. International Journal of Computer 

Vision, 51 (2) (2003) 91-109. https://doi.org/10.1023/A:1021669406132 

[20] K. Dimitropoulos, P. Barmpoutis, N. Grammalidis, Higher Order Linear Dynamical Systems for 

Smoke Detection in Video Surveillance Applications, IEEE Trans. Circuits Syst. Video Techn., 27 

(5) (2017) 1143-1154. https://doi.org/10.1109/TCSVT.2016.2527340 

[21] S.M. Siddiqi, B. Boots, G.J. Gordon, A constraint generation approach to learning stable linear 

dynamical systems, In Advances in neural information processing systems (2008) 1329-1336. 

[22] G. Arfken, Gram-schmidt orthogonalization. Mathematical methods for physicists, 3 (1985) 516-

520. 

[23] H. Jégou, M. Douze, C. Schmid, P. Pérez, Aggregating local descriptors into a compact image 

representation, in: Proceedings of the IEEE International Conference on Computer Vision and 

Pattern Recognition (CVPR), (2010), pp. 3304-3311. https://doi.org/10.1109/CVPR.2010.5540039 

[24] V. Kantorov, I. Laptev, Efficient feature extraction, encoding and classification for action 

recognition, in: Proceedings of the IEEE International Conference on Computer Vision and Pattern 

Recognition (CVPR), (2014), pp. 2593-2600. https://doi.org/10.1109/CVPR.2014.332 

[25] K. Dimitropoulos, P. Barmpoutis, A. Kitsikidis, N. Grammalidis, Classification of Multidimensional 

Time-Evolving Data using Histograms of Grassmannian Points, IEEE Transactions on Circuits and 

Systems for Video Technology, 28 (4) (2018) 892-905. 

https://doi.org/10.1109/TCSVT.2016.2631719 

[26] A.Y. Wright, A.G. Yang, S.S. Sastry, M. Yi, Robust face recognition via sparse representation, 

IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009) 210–222. 

https://doi.org/10.1109/TPAMI.2008.79 

[27] D. Kastaniotis, I. Theodorakopoulos, G. Economou, S. Fotopoulos, Gait based recognition via 

fusing information from Euclidean and Riemannian manifolds, Pattern Recognition Letters, 84 

(2016) 245-251. https://doi.org/10.1016/j.patrec.2016.10.012 

[28] H. Karcher, Riemannian center of mass and mollifier smoothing, Communications on Pure and 

Applied Mathematics, 30 (5) (1977) 509–541. https://doi.org/10.1002/cpa.3160300502 



24 
 

[29] [dataset] A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, H.E. 

Stanley, Physiobank, physiotoolkit, and physionet. Circulation, 101(23), e215-e220. 

[30] B. Surawicz, T. Knilans, Chou's Electrocardiography in Clinical Practice E-Book: Adult and 

Pediatric. Elsevier Health Sciences, 2008. 

[31] U.R. Acharya, H. Fujita, M. Adam, O.S. Lih, V.K. Sudarshan, T.J. Hong, J.EW. Koh, Y. Hagiwara, 

C.C. Chua, K.C. Poo, T.R. San, Automated characterization and classification of coronary artery 

disease and myocardial infarction by decomposition of ECG signals: A comparative 

study, Information Sciences, 377 (2016) 17-29, https://doi.org/10.1016/j.ins.2016.10.013. 

[32] C.D. Nugent, J.A.C. Webb, N.D. Black, Feature and classifier fusion for 12-lead ECG 

classification, Medical informatics and the Internet in medicine, 25 (3) (2000) 225-235. 

https://doi.org/10.1080/146392300750019217 

[33] B. Chen, W. Guo, B. Li, R.K. Teng, M. Dai, J. Luo, H. Wang, H., A Study of Deep Feature Fusion 

based Methods for Classifying Multi-lead ECG. (2018) arXiv preprint arXiv:1808.01721. 

[34] K. Dimitropoulos, P. Barmpoutis, N. Grammalidis, Spatio-Temporal Flame Modeling and Dynamic 

Texture Analysis for Automatic Video-Based Fire Detection, IEEE Transactions on Circuits and 

Systems for Video Technology, 25 (2) (2015) 339-351. 

https://doi.org/10.1109/TCSVT.2014.2339592 

[35] A. Dimou, D. Ataloglou, K. Dimitropoulos, F. Alvarez, P. Daras, LDS-Inspired Residual Networks, 

IEEE Transactions on Circuits and Systems for Video Technology, (2018), 

https://doi.org/10.1109/TCSVT.2018.2869680 

 

 

 

 

 

 

 

 

 

 

 

The original publication can be found in: 

https://www.sciencedirect.com/science/article/pii/S1746809419301004 

View publication statsView publication stats

https://doi.org/10.1109/TCSVT.2018.2869680
https://www.sciencedirect.com/science/article/pii/S1746809419301004
https://www.researchgate.net/publication/332496574

