Journal article Open Access

Multi-lead ECG signal analysis for myocardial infarction detection and localization through the mapping of Grassmannian and Euclidean features into a common Hilbert space

Panagiotis Barmpoutis; Kosmas Dimitropoulos; Anestis Apostolidis; Nikos Grammalidis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200221192055.0</controlfield>
  <controlfield tag="001">3678671</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Visual Computing Lab, Information Technologies Institute, Center for Research and Technology Hellas,</subfield>
    <subfield code="a">Kosmas Dimitropoulos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University,</subfield>
    <subfield code="a">Anestis Apostolidis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Visual Computing Lab, Information Technologies Institute, Center for Research and Technology Hellas,</subfield>
    <subfield code="a">Nikos Grammalidis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1519791</subfield>
    <subfield code="z">md5:b042a0da017548a7b336a8abfd60f14a</subfield>
    <subfield code="u">https://zenodo.org/record/3678671/files/elsevier_V19.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3678671</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London</subfield>
    <subfield code="a">Panagiotis Barmpoutis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Multi-lead ECG signal analysis for myocardial infarction detection and localization through the mapping of Grassmannian and Euclidean features into a common Hilbert space</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">690494</subfield>
    <subfield code="a">Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Electrocardiogram is commonly used as a diagnostic tool for the monitoring of cardiac health and the detection of possible heart diseases. However, the procedure followed for the diagnosis of heart abnormalities is time consuming and prone to human errors. Thus, the development of computer-aided techniques for the automatic analysis of electrocardiogram signals is of vital importance for the diagnosis and prevention of heart diseases. The most serious outcome of coronary heart disease is the myocardial infarction, i.e. the rapid and irreversible damage of cardiac muscles, which, if not diagnosed and treated in time, continues to damage further the myocardial structure and function. In this paper we propose a novel approach for the automatic detection and localization of myocardial infarction from multi-lead electrocardiogram signals.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3678670</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3678671</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
20
46
views
downloads
All versions This version
Views 2020
Downloads 4646
Data volume 69.9 MB69.9 MB
Unique views 1919
Unique downloads 4545

Share

Cite as