Poster Open Access

iPrognosis – frühe Erkennung der Parkinsonerkrankung mittels Smartphone App

Lisa Klingelhoefer; Stelios Hadjidimitriou; Anastasios Delopoulos; Fotis Karayiannis; Nikos Grammalidis; Michael Stadtschnitzer; Sevasti Bostanjopoulou; Kallol Ray Chaudhuri; Leontios Hadjileontiadis; Heinz Reichmann


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/9ff38956-48a2-45bc-9197-92886412796f/Poster_iPrognosis_DPG%20D%C3%BCsseldorf%202019_Klingelhoefer%20FINAL.pdf"
      }, 
      "checksum": "md5:68c629df47ee2062680474085f524944", 
      "bucket": "9ff38956-48a2-45bc-9197-92886412796f", 
      "key": "Poster_iPrognosis_DPG D\u00fcsseldorf 2019_Klingelhoefer FINAL.pdf", 
      "type": "pdf", 
      "size": 819557
    }
  ], 
  "owners": [
    28713
  ], 
  "doi": "10.5281/zenodo.3678627", 
  "stats": {
    "version_unique_downloads": 27.0, 
    "unique_views": 27.0, 
    "views": 27.0, 
    "version_views": 27.0, 
    "unique_downloads": 27.0, 
    "version_unique_views": 27.0, 
    "volume": 22947596.0, 
    "version_downloads": 28.0, 
    "downloads": 28.0, 
    "version_volume": 22947596.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3678627", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3678626", 
    "bucket": "https://zenodo.org/api/files/9ff38956-48a2-45bc-9197-92886412796f", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3678626.svg", 
    "html": "https://zenodo.org/record/3678627", 
    "latest_html": "https://zenodo.org/record/3678627", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3678627.svg", 
    "latest": "https://zenodo.org/api/records/3678627"
  }, 
  "conceptdoi": "10.5281/zenodo.3678626", 
  "created": "2020-02-21T16:27:50.124183+00:00", 
  "updated": "2020-02-21T19:20:55.004890+00:00", 
  "conceptrecid": "3678626", 
  "revision": 2, 
  "id": 3678627, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3678627", 
    "description": "<p>Mittels moderner Technologien wie Smartphones k&ouml;nnen gro&szlig;e Mengen an Daten<br>\nkontinuierlich &uuml;ber einen l&auml;ngeren Zeitraum, objektiv und ohne aktives Zutun der<br>\nNutzer im allt&auml;glichen Leben erhoben werden. Zur fr&uuml;hen Diagnosestellung des<br>\nidiopathischen Parkinsonsyndroms als langsam progrediente, chronische<br>\nErkrankung mit einschleichendem Auftreten motorischer sowie nicht-motorischer<br>\nSymptome ist dies ideal. Eine fr&uuml;here Diagnosestellung ist eine Grundvoraussetzung<br>\nzur Entwicklung neuromodulatorischer Therapien.<br>\nDas iPrognosis-Konsortium (11 Organisationen mit drei medizinischen Zentren<br>\naus 6 EU-L&auml;ndern) entwickelt eine Android Smartphone App zur Erfassung von<br>\nVerhalten und Verhaltens&auml;nderungen im Umgang mit dem Smartphone, welche<br>\nAusdruck motorischer und nicht-motorischer Symptome der Parkinsonerkrankung<br>\nsein k&ouml;nnen.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "iPrognosis \u2013 fr\u00fche Erkennung der Parkinsonerkrankung mittels Smartphone App", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3678626"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3678627"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "690494", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::690494"
        }, 
        "title": "Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS", 
        "acronym": "i-PROGNOSIS", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "publication_date": "2020-02-21", 
    "creators": [
      {
        "affiliation": "Department of Neurology, Technical University Dresden, Dresden, Germany", 
        "name": "Lisa Klingelhoefer"
      }, 
      {
        "affiliation": "Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.", 
        "name": "Stelios Hadjidimitriou"
      }, 
      {
        "affiliation": "Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.", 
        "name": "Anastasios Delopoulos"
      }, 
      {
        "affiliation": "Microsoft Innovation Center Greece, Athens, Greece.", 
        "name": "Fotis Karayiannis"
      }, 
      {
        "affiliation": "Information Technologies Institute, CERTH, Thessaloniki, Greece", 
        "name": "Nikos Grammalidis"
      }, 
      {
        "affiliation": "Fraunhofer IAIS, Schlo\u00df Birlinghoven, Sankt Augustin, Germany", 
        "name": "Michael Stadtschnitzer"
      }, 
      {
        "affiliation": "G. Papanikolaou Hospital, 3rd Neurological Clinic, Thessaloniki, Greece", 
        "name": "Sevasti Bostanjopoulou"
      }, 
      {
        "affiliation": "King's College Hospital NHS Foundation Trust, London, United Kingdom", 
        "name": "Kallol Ray Chaudhuri"
      }, 
      {
        "affiliation": "Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.", 
        "name": "Leontios Hadjileontiadis"
      }, 
      {
        "affiliation": "Department of Neurology, Technical University Dresden, Dresden, Germany", 
        "name": "Heinz Reichmann"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "poster", 
      "title": "Poster"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3678626", 
        "relation": "isVersionOf"
      }
    ]
  }
}
27
28
views
downloads
All versions This version
Views 2727
Downloads 2828
Data volume 22.9 MB22.9 MB
Unique views 2727
Unique downloads 2727

Share

Cite as