Poster Open Access
Lisa Klingelhoefer; Stelios Hadjidimitriou; Anastasios Delopoulos; Fotis Karayiannis; Nikos Grammalidis; Michael Stadtschnitzer; Sevasti Bostanjopoulou; Kallol Ray Chaudhuri; Leontios Hadjileontiadis; Heinz Reichmann
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/9ff38956-48a2-45bc-9197-92886412796f/Poster_iPrognosis_DPG%20D%C3%BCsseldorf%202019_Klingelhoefer%20FINAL.pdf" }, "checksum": "md5:68c629df47ee2062680474085f524944", "bucket": "9ff38956-48a2-45bc-9197-92886412796f", "key": "Poster_iPrognosis_DPG D\u00fcsseldorf 2019_Klingelhoefer FINAL.pdf", "type": "pdf", "size": 819557 } ], "owners": [ 28713 ], "doi": "10.5281/zenodo.3678627", "stats": { "version_unique_downloads": 27.0, "unique_views": 27.0, "views": 27.0, "version_views": 27.0, "unique_downloads": 27.0, "version_unique_views": 27.0, "volume": 22947596.0, "version_downloads": 28.0, "downloads": 28.0, "version_volume": 22947596.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3678627", "conceptdoi": "https://doi.org/10.5281/zenodo.3678626", "bucket": "https://zenodo.org/api/files/9ff38956-48a2-45bc-9197-92886412796f", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3678626.svg", "html": "https://zenodo.org/record/3678627", "latest_html": "https://zenodo.org/record/3678627", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3678627.svg", "latest": "https://zenodo.org/api/records/3678627" }, "conceptdoi": "10.5281/zenodo.3678626", "created": "2020-02-21T16:27:50.124183+00:00", "updated": "2020-02-21T19:20:55.004890+00:00", "conceptrecid": "3678626", "revision": 2, "id": 3678627, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3678627", "description": "<p>Mittels moderner Technologien wie Smartphones können große Mengen an Daten<br>\nkontinuierlich über einen längeren Zeitraum, objektiv und ohne aktives Zutun der<br>\nNutzer im alltäglichen Leben erhoben werden. Zur frühen Diagnosestellung des<br>\nidiopathischen Parkinsonsyndroms als langsam progrediente, chronische<br>\nErkrankung mit einschleichendem Auftreten motorischer sowie nicht-motorischer<br>\nSymptome ist dies ideal. Eine frühere Diagnosestellung ist eine Grundvoraussetzung<br>\nzur Entwicklung neuromodulatorischer Therapien.<br>\nDas iPrognosis-Konsortium (11 Organisationen mit drei medizinischen Zentren<br>\naus 6 EU-Ländern) entwickelt eine Android Smartphone App zur Erfassung von<br>\nVerhalten und Verhaltensänderungen im Umgang mit dem Smartphone, welche<br>\nAusdruck motorischer und nicht-motorischer Symptome der Parkinsonerkrankung<br>\nsein können.</p>", "license": { "id": "CC-BY-4.0" }, "title": "iPrognosis \u2013 fr\u00fche Erkennung der Parkinsonerkrankung mittels Smartphone App", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3678626" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3678627" } } ] }, "grants": [ { "code": "690494", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::690494" }, "title": "Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS", "acronym": "i-PROGNOSIS", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "publication_date": "2020-02-21", "creators": [ { "affiliation": "Department of Neurology, Technical University Dresden, Dresden, Germany", "name": "Lisa Klingelhoefer" }, { "affiliation": "Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.", "name": "Stelios Hadjidimitriou" }, { "affiliation": "Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.", "name": "Anastasios Delopoulos" }, { "affiliation": "Microsoft Innovation Center Greece, Athens, Greece.", "name": "Fotis Karayiannis" }, { "affiliation": "Information Technologies Institute, CERTH, Thessaloniki, Greece", "name": "Nikos Grammalidis" }, { "affiliation": "Fraunhofer IAIS, Schlo\u00df Birlinghoven, Sankt Augustin, Germany", "name": "Michael Stadtschnitzer" }, { "affiliation": "G. Papanikolaou Hospital, 3rd Neurological Clinic, Thessaloniki, Greece", "name": "Sevasti Bostanjopoulou" }, { "affiliation": "King's College Hospital NHS Foundation Trust, London, United Kingdom", "name": "Kallol Ray Chaudhuri" }, { "affiliation": "Department of Electrical & Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.", "name": "Leontios Hadjileontiadis" }, { "affiliation": "Department of Neurology, Technical University Dresden, Dresden, Germany", "name": "Heinz Reichmann" } ], "access_right": "open", "resource_type": { "type": "poster", "title": "Poster" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3678626", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 27 | 27 |
Downloads | 28 | 28 |
Data volume | 22.9 MB | 22.9 MB |
Unique views | 27 | 27 |
Unique downloads | 27 | 27 |