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Abstract 

This paper reports a technical demonstration showing the use of the ONOS SDN controller for disaggregated                
transport networks, within the ODTN Project, covering the provisioning of data connectivity services and              
demonstrating advanced automatic failure recovery, both at the data and control planes. 

 

1 Introduction 

Disaggregation and modularization is a key      
component in the future of optical networks. A        
disaggregated model can be based on white boxes        
with open and standard APIs, where different optical        
network elements (such as ROADMs, transponders,      
line amplifiers, etc.) can be provided by different        
vendors. Such disaggregation allows for more      
flexible, reconfigurable and elastic network     
architectures and deployments. A key component in       
these networks is the optical domain controller, which        
is responsible for discovering the topology through       
multiple protocols and device-specific models, for      
providing service establishment, and to continuously      
manage and monitor the network. The overall       
disaggregated optical network architecture need to      
take into account several kinds of failures, both in the          
dataplane (such as node failures or fiber cuts and         
device malfunction), and in the control plane (such as         
the failure of a controller instance). This       
demonstration shows an optical network deployment      
controlled by the Open Network Operating System       
(ONOS®) [1]. During normal operation, ONOS first       
discovers the equipment through the Netconf protocol       
[2] and the corresponding device Yang models [3]        
(e.g OpenConfig [4]). Then, after receiving a request        

via its Northbound API, it provisions a bidirectional        
optical connectivity service across the network,      
configuring wavelength and power across the different       
devices. After the end-to-end optical channel is       
established, the demo simulates a dataplane failure       
(e.g., through a port down command), akeen to a real          
world fiber-cut. ONOS will automatically re-provision      
the path across the network to account for the failure,          
with minimal signal disruption. A second failure, this        
time in the control plane, will be demonstrated,        
showing the robustness of the ONOS controller and        
how the remaining instances recover.  

2. Data Plane Deployment 

The network is comprised of 2 Transponders and 2         
ROADMs, which are connected through redundant      
links to support data plane failover. As Fig. 1 shows,          
the transponders are two Edgecore AS7716-24SC      
white box devices equipped with Lumentum      
CFP2-ACO Coherent Optical Transceivers on the      
optical side. The transponders expose a Netconf API        
modelling their capabilities and data through the       
OpenConfig Yang models. The Lumentum ACO card       
is integrated through a driver with the Transponder        
Abstraction Interface (TAI) [5] which exposes a high        
level set of APIs to configure transceiver capabilities.        
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The ROADMS are Lumentum ROADM-20 white      
boxes that expose a Netconf API described by a Yang          
model provided with the device [9]. The Transponders        
Client ports have emulated end-hosts to generate       
traffic and measure network state. 

3 Control Plane Architecture 

The ONOS SDN Controller is deployed in a 3         
instance scenario, as Fig. 2 shows. Every instance        
runs identical java code in a Java Virtual Machine         
(JVM) inside it’s own Docker container. The       
instances share state through a 3 instance ATOMIX        
cluster [6], again deployed in a 3 instance scenario         
with 3 other Docker containers running a JVM. This         
results in 6 docker containers for the total deployment.         
The docker containers run over a bare metal server         
with an 10-core x86 CPU and 64GB memory        
capability. The server is connected through a separate        
management network to the network devices. 

 

 

4 Topology Discovery and Optical    
Connectivity Establishment  

Topology information, involving devices’ ports and      
capabilities (transceivers, physical-channels,   
identifiers, etc.) as well as links is discovered through         
OpenConfig interfaces based on NetConf protocol.      
Topological elements are stored in the ONOS       
dynamic configuration store. The storage is structured       
following pre-configured data models. In particular,      
ONF open Transport API (TAPI) [7] data models, so         
TAPI data nodes such as links, nodes, edge points and          
Service Interface Points (SIPs) are exposed to       
applications and high level API consumers such as        
network orchestrators or operators’ OSS/BSS, through      
a RESTCONF [8] interface. Other than retrieving       
service interface points (SIPs), such interface may       
also be used to learn about the network topology and          
issue connectivity service requests. 

The demo simulates an OSS/BSS that issues a         
connectivity request through TAPI to ONOS, to       
obtain end to end connectivity between two client-side        
ports of the transponders. ONOS processes the       
request, performs path computation and resource      
allocation (i.e., wavelength assignment), resulting in      
specific configurations of Transponders and     
ROADMs. Such configurations are stored in the       
ONOS system in the form flow rules. For example,         
for the transceivers optical ports these rules convey        
the DWDM frequency and grid, port number, as well         
as information required to configure a      
cross-connection between the client side port and the        
line side port. Each device has an ONOS driver that          
maps flow rules into actual device configuration based        
on the underlying device data model (i.e., edit-config        
NetConf messages are generated with the proper xml        
code). In particular, for the transponders, OpenConfig       
constructs are created and sent down to the device         
through the pre-established NetConf connection. The      
line-side to client-side cross-connection is installed      
through a logical channel association, while an optical        
channel construct with frequency and power for the        
specific transceiver is to configure the Lumentum       
ACO card. After the configuration of both       
transponders and both ROADMs we show that the        
two hosts connected to the client-side ports of the         
Transponders can reach each other and exchange       
traffic.  
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5 Data Plane failure and recovery 

With the traffic flowing we simulate a fiber-cut        
failure. The fiber cut is simulated by switching one of          
the ROADM’s ports to a down state via the device          
CLI, completely separate from ONOS. Such      
port-down event is recognized by ONOS that in turn         
marks the link as failed. The link event gets parsed by           
the optical path computation module that, with the        
updated topology recomputes the path (i.e., using       
remaining devices and links).  

Such re-computation is automatically triggered by       
the port-down event events with no human       
intervention. The same mechanism is used in case of         
device failure, when the ONOS controller loses the        
connection to a device it considers the device as failed          
and trigger the recovery of intents traversing the failed         
device.. ONOS tries to re-use as much as possible of          
the existing path, configuring on this fallback path the         
same wavelength for ports and links. All of the event          
handling, path computation, failover scenarios is done       
in the ONOS intent subsystem.  
In the demo a pair of optical links will be deployed           
between the ROADMs to accommodate for the       
simulated link failure. 
 

6 Control Plane failure and recovery 

Different types of failures can happen at the control         
plane layer, e.g., a process within one of the ONOS          
instances is faulty or the supporting physical server        
has failed. This can lead to subsequent failures and         
undefined behaviour of the system. In this demo, we         
show ONOS deployed in a multi-instance scenario. In        
such scenario ONOS is capable of handling instance        

failure by leveraging shared state and changing       
device mastership.  

Initially, and as Fig. 3 shows, 3 docker containers of          
ONOS control the network together, where ONOS_1       
and ONOS_3 control Transponder_1 and     
Transponder_2 respectively, having state    
synchronization between the instances. At step ①,       
ONOS_1 docker container is killed and      
Transponder_1 goes immediately out of management      
because no Netconf session is open to him.        
Mastership of Transponder 1 is then moved to active         
ONOS_2 via negotiation at step ②. The new master         
will firstly read the state information of the device in          
both ONOS traditional datastore and TAPI data tree.        
Finally at step ③, ONOS_2 establishes a new Netconf         
channel with Transponder_1 that was controlled by       
the deactivated ONOS_1. At this point ONOS_2 is        
again in full control of Transponder 1 and can react to           
events and provision configuration on it. The whole        
recovery procedure enables a cluster of ONOS       
instances to maintain control of the network at any         
given time with no inconsistent state., The control        
plane recovery, as the data plane one, is completed         
automatically without operator intervention. 

7 Conclusion 

This demonstration has shown the use of the ONOS         
SDN controller to provision data connectivity services       
across a disaggregated optical network with real       
hardware exposing a common and open data model.        
Such deployment enables advanced recovery, both at       
the control and data plane layer. For the former, the          
recovery leverages ONOS distributed capabilities that      
provide a level of robustness against failures of the         
control processes. Overall, it shows the feasibility of        
the selected approach and the readiness of the system         
for production grade deployments. The demo shows       
also the feasibility of Open source software and open         
APIs for mission critical deployments  
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