
Reliable Optical Networks With ODTN, Resiliency and
Failover In Data Plane And Control Plane

Andrea Campanella1, Boyuan Yan1,6, Ramon Casellas2, Alessio Giorgetti3, Victor Lopez4,
Arturo Mayoral5

1Open Networking Foundation, Menlo Park, USA
2CTTC/CERCA, Optical Networks and Systems Department, Castelldefels, Barcelona, Spain

3Scuola Superiore Sant’Anna / CNIT, Pisa, Italy
4Telefonica, Madrid, Spain

5Universitat Politècnica de Catalunya, Barcelona, Spain
6Beijing University of Posts and Telecommunications, Beijing, China

andrea@opennetworking.org

Keywords: SDN, Optical Network Control, OpenConfig device models, Open Line System, resiliency, ONOS
controller

Abstract

This paper reports a technical demonstration showing the use of the ONOS SDN controller for disaggregated
transport networks, within the ODTN Project, covering the provisioning of data connectivity services and
demonstrating advanced automatic failure recovery, both at the data and control planes.

1 Introduction

Disaggregation and modularization is a key
component in the future of optical networks. A
disaggregated model can be based on white boxes
with open and standard APIs, where different optical
network elements (such as ROADMs, transponders,
line amplifiers, etc.) can be provided by different
vendors. Such disaggregation allows for more
flexible, reconfigurable and elastic network
architectures and deployments. A key component in
these networks is the optical domain controller, which
is responsible for discovering the topology through
multiple protocols and device-specific models, for
providing service establishment, and to continuously
manage and monitor the network. The overall
disaggregated optical network architecture need to
take into account several kinds of failures, both in the
dataplane (such as node failures or fiber cuts and
device malfunction), and in the control plane (such as
the failure of a controller instance). This
demonstration shows an optical network deployment
controlled by the Open Network Operating System
(ONOS®) [1]. During normal operation, ONOS first
discovers the equipment through the Netconf protocol
[2] and the corresponding device Yang models [3]
(e.g OpenConfig [4]). Then, after receiving a request

via its Northbound API, it provisions a bidirectional
optical connectivity service across the network,
configuring wavelength and power across the different
devices. After the end-to-end optical channel is
established, the demo simulates a dataplane failure
(e.g., through a port down command), akeen to a real
world fiber-cut. ONOS will automatically re-provision
the path across the network to account for the failure,
with minimal signal disruption. A second failure, this
time in the control plane, will be demonstrated,
showing the robustness of the ONOS controller and
how the remaining instances recover.

2. Data Plane Deployment

The network is comprised of 2 Transponders and 2
ROADMs, which are connected through redundant
links to support data plane failover. As Fig. 1 shows,
the transponders are two Edgecore AS7716-24SC
white box devices equipped with Lumentum
CFP2-ACO Coherent Optical Transceivers on the
optical side. The transponders expose a Netconf API
modelling their capabilities and data through the
OpenConfig Yang models. The Lumentum ACO card
is integrated through a driver with the Transponder
Abstraction Interface (TAI) [5] which exposes a high
level set of APIs to configure transceiver capabilities.

1

The ROADMS are Lumentum ROADM-20 white
boxes that expose a Netconf API described by a Yang
model provided with the device [9]. The Transponders
Client ports have emulated end-hosts to generate
traffic and measure network state.

3 Control Plane Architecture

The ONOS SDN Controller is deployed in a 3
instance scenario, as Fig. 2 shows. Every instance
runs identical java code in a Java Virtual Machine
(JVM) inside it’s own Docker container. The
instances share state through a 3 instance ATOMIX
cluster [6], again deployed in a 3 instance scenario
with 3 other Docker containers running a JVM. This
results in 6 docker containers for the total deployment.
The docker containers run over a bare metal server
with an 10-core x86 CPU and 64GB memory
capability. The server is connected through a separate
management network to the network devices.

4 Topology Discovery and Optical
Connectivity Establishment

Topology information, involving devices’ ports and
capabilities (transceivers, physical-channels,
identifiers, etc.) as well as links is discovered through
OpenConfig interfaces based on NetConf protocol.
Topological elements are stored in the ONOS
dynamic configuration store. The storage is structured
following pre-configured data models. In particular,
ONF open Transport API (TAPI) [7] data models, so
TAPI data nodes such as links, nodes, edge points and
Service Interface Points (SIPs) are exposed to
applications and high level API consumers such as
network orchestrators or operators’ OSS/BSS, through
a RESTCONF [8] interface. Other than retrieving
service interface points (SIPs), such interface may
also be used to learn about the network topology and
issue connectivity service requests.

The demo simulates an OSS/BSS that issues a
connectivity request through TAPI to ONOS, to
obtain end to end connectivity between two client-side
ports of the transponders. ONOS processes the
request, performs path computation and resource
allocation (i.e., wavelength assignment), resulting in
specific configurations of Transponders and
ROADMs. Such configurations are stored in the
ONOS system in the form flow rules. For example,
for the transceivers optical ports these rules convey
the DWDM frequency and grid, port number, as well
as information required to configure a
cross-connection between the client side port and the
line side port. Each device has an ONOS driver that
maps flow rules into actual device configuration based
on the underlying device data model (i.e., edit-config
NetConf messages are generated with the proper xml
code). In particular, for the transponders, OpenConfig
constructs are created and sent down to the device
through the pre-established NetConf connection. The
line-side to client-side cross-connection is installed
through a logical channel association, while an optical
channel construct with frequency and power for the
specific transceiver is to configure the Lumentum
ACO card. After the configuration of both
transponders and both ROADMs we show that the
two hosts connected to the client-side ports of the
Transponders can reach each other and exchange
traffic.

2

5 Data Plane failure and recovery

With the traffic flowing we simulate a fiber-cut
failure. The fiber cut is simulated by switching one of
the ROADM’s ports to a down state via the device
CLI, completely separate from ONOS. Such
port-down event is recognized by ONOS that in turn
marks the link as failed. The link event gets parsed by
the optical path computation module that, with the
updated topology recomputes the path (i.e., using
remaining devices and links).

Such re-computation is automatically triggered by
the port-down event events with no human
intervention. The same mechanism is used in case of
device failure, when the ONOS controller loses the
connection to a device it considers the device as failed
and trigger the recovery of intents traversing the failed
device.. ONOS tries to re-use as much as possible of
the existing path, configuring on this fallback path the
same wavelength for ports and links. All of the event
handling, path computation, failover scenarios is done
in the ONOS intent subsystem.
In the demo a pair of optical links will be deployed
between the ROADMs to accommodate for the
simulated link failure.

6 Control Plane failure and recovery

Different types of failures can happen at the control
plane layer, e.g., a process within one of the ONOS
instances is faulty or the supporting physical server
has failed. This can lead to subsequent failures and
undefined behaviour of the system. In this demo, we
show ONOS deployed in a multi-instance scenario. In
such scenario ONOS is capable of handling instance

failure by leveraging shared state and changing
device mastership.

Initially, and as Fig. 3 shows, 3 docker containers of
ONOS control the network together, where ONOS_1
and ONOS_3 control Transponder_1 and
Transponder_2 respectively, having state
synchronization between the instances. At step ①,
ONOS_1 docker container is killed and
Transponder_1 goes immediately out of management
because no Netconf session is open to him.
Mastership of Transponder 1 is then moved to active
ONOS_2 via negotiation at step ②. The new master
will firstly read the state information of the device in
both ONOS traditional datastore and TAPI data tree.
Finally at step ③, ONOS_2 establishes a new Netconf
channel with Transponder_1 that was controlled by
the deactivated ONOS_1. At this point ONOS_2 is
again in full control of Transponder 1 and can react to
events and provision configuration on it. The whole
recovery procedure enables a cluster of ONOS
instances to maintain control of the network at any
given time with no inconsistent state., The control
plane recovery, as the data plane one, is completed
automatically without operator intervention.

7 Conclusion

This demonstration has shown the use of the ONOS
SDN controller to provision data connectivity services
across a disaggregated optical network with real
hardware exposing a common and open data model.
Such deployment enables advanced recovery, both at
the control and data plane layer. For the former, the
recovery leverages ONOS distributed capabilities that
provide a level of robustness against failures of the
control processes. Overall, it shows the feasibility of
the selected approach and the readiness of the system
for production grade deployments. The demo shows
also the feasibility of Open source software and open
APIs for mission critical deployments

8 Acknowledgements

This work has been done under the ONF framework
with an open community and the code lives under the
APACHE 2.0 license, it was also partially supported
by the EC H2020 METRO-HAUL Project with G.A
761727, and BUPT Ph.D. Students Short Term
Exchange Program.

9 References

[1] Open Network Operating System',
https://github.com/opennetworkinglab/onos, Accessed
6 May 2019.

3

[2] RFC6241: 'Network Configuration Protocol
(NETCONF)', 2011.
[3] RFC6020: 'YANG - A Data Modeling Language
for the Network Configuration Protocol (NETCONF)',
2015.
[4] 'Open Config: Vendor-neutral, model-driven
network management designed by users',
http://openconfig.net/, accessed 6 May 2019.
[5] 'Disaggregated Transponder Chip Transport
Abstraction Interface',
https://github.com/Telecominfraproject/oopt-tai,
Accessed 6 May 2019.
[6] ‘Atomix framework’, https://atomix.io/
[7] 'Open Transport Configuration & Control',
https://wiki.opennetworking.org/display/OTCC/TAPI,
Accessed 6 May, 2019.
[8] RFC8040: 'RESTCONF Protocol', 2017.
[9] A. Sgambelluri, J.-L. Izquierdo-Zaragoza, A.
Giorgetti, et al "Fully Disaggregated ROADM White
Box with NETCONF/YANG Control, Telemetry, and
Machine Learning-based Monitoring" in Tech. Dig.
OFC 2018.

4

https://atomix.io/

