Conference paper Open Access

Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection

Alexandros Papadopoulos; Konstantinos Kyritsis; Sevasti Bostanjopoulou; Lisa Klingelhoefer; Ray K. Chaudhuri; Anastasios Delopoulos


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200221072054.0</controlfield>
  <controlfield tag="001">3676525</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece</subfield>
    <subfield code="a">Konstantinos Kyritsis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Neurology, Hippokration Hospital, Thessaloniki, Greece</subfield>
    <subfield code="a">Sevasti Bostanjopoulou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Neurology, Technical University of Dresden, Dresden, Germany</subfield>
    <subfield code="a">Lisa Klingelhoefer</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, UK</subfield>
    <subfield code="a">Ray K. Chaudhuri</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece</subfield>
    <subfield code="a">Anastasios Delopoulos</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">427186</subfield>
    <subfield code="z">md5:8b36f02cf9ecb7373e613d244180f455</subfield>
    <subfield code="u">https://zenodo.org/record/3676525/files/alpapado2019embc.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3676525</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece</subfield>
    <subfield code="a">Alexandros Papadopoulos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">690494</subfield>
    <subfield code="a">Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Parkinson&amp;rsquo;s Disease (PD) is a neurodegenerative&amp;nbsp;disorder that manifests through slowly progressing symptoms,&amp;nbsp;such as tremor, voice degradation and bradykinesia. Automated&amp;nbsp;detection of such symptoms has recently received much attention&amp;nbsp;by the research community, owing to the clinical benefits associated with the early diagnosis of the disease. Unfortunately,&amp;nbsp;most of the approaches proposed so far, operate under a strictly&amp;nbsp;laboratory setting, thus limiting their potential applicability in&amp;nbsp;real world conditions. In this work, we present a method for automatically detecting tremorous episodes related to PD, based on acceleration signals. We propose to address the problem&amp;nbsp;at hand, as a case of Multiple-Instance Learning, wherein a&amp;nbsp;subject is represented as an unordered bag of signal segments&amp;nbsp;and a single, expert-provided, ground-truth. We employ a&amp;nbsp;deep learning approach that combines feature learning and a&amp;nbsp;learnable pooling stage and is trainable end-to-end. Results on&amp;nbsp;a newly introduced dataset of accelerometer signals collected&amp;nbsp;in-the-wild confirm the validity of the proposed approach.&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3676524</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3676525</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
56
108
views
downloads
All versions This version
Views 5656
Downloads 108108
Data volume 46.1 MB46.1 MB
Unique views 5151
Unique downloads 103103

Share

Cite as