Conference paper Open Access

Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection

Alexandros Papadopoulos; Konstantinos Kyritsis; Sevasti Bostanjopoulou; Lisa Klingelhoefer; Ray K. Chaudhuri; Anastasios Delopoulos


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/e04cc163-acaa-47ca-97ee-8a11083a16b2/alpapado2019embc.pdf"
      }, 
      "checksum": "md5:8b36f02cf9ecb7373e613d244180f455", 
      "bucket": "e04cc163-acaa-47ca-97ee-8a11083a16b2", 
      "key": "alpapado2019embc.pdf", 
      "type": "pdf", 
      "size": 427186
    }
  ], 
  "owners": [
    28713
  ], 
  "doi": "10.5281/zenodo.3676525", 
  "stats": {
    "version_unique_downloads": 103.0, 
    "unique_views": 51.0, 
    "views": 56.0, 
    "version_views": 56.0, 
    "unique_downloads": 103.0, 
    "version_unique_views": 51.0, 
    "volume": 46136088.0, 
    "version_downloads": 108.0, 
    "downloads": 108.0, 
    "version_volume": 46136088.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3676525", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3676524", 
    "bucket": "https://zenodo.org/api/files/e04cc163-acaa-47ca-97ee-8a11083a16b2", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3676524.svg", 
    "html": "https://zenodo.org/record/3676525", 
    "latest_html": "https://zenodo.org/record/3676525", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3676525.svg", 
    "latest": "https://zenodo.org/api/records/3676525"
  }, 
  "conceptdoi": "10.5281/zenodo.3676524", 
  "created": "2020-02-20T11:02:23.910112+00:00", 
  "updated": "2020-02-21T07:20:54.342901+00:00", 
  "conceptrecid": "3676524", 
  "revision": 4, 
  "id": 3676525, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3676525", 
    "description": "<p>Parkinson&rsquo;s Disease (PD) is a neurodegenerative&nbsp;disorder that manifests through slowly progressing symptoms,&nbsp;such as tremor, voice degradation and bradykinesia. Automated&nbsp;detection of such symptoms has recently received much attention&nbsp;by the research community, owing to the clinical benefits associated with the early diagnosis of the disease. Unfortunately,&nbsp;most of the approaches proposed so far, operate under a strictly&nbsp;laboratory setting, thus limiting their potential applicability in&nbsp;real world conditions. In this work, we present a method for automatically detecting tremorous episodes related to PD, based on acceleration signals. We propose to address the problem&nbsp;at hand, as a case of Multiple-Instance Learning, wherein a&nbsp;subject is represented as an unordered bag of signal segments&nbsp;and a single, expert-provided, ground-truth. We employ a&nbsp;deep learning approach that combines feature learning and a&nbsp;learnable pooling stage and is trainable end-to-end. Results on&nbsp;a newly introduced dataset of accelerometer signals collected&nbsp;in-the-wild confirm the validity of the proposed approach.&nbsp;</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3676524"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3676525"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "690494", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::690494"
        }, 
        "title": "Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS", 
        "acronym": "i-PROGNOSIS", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "publication_date": "2019-07-31", 
    "creators": [
      {
        "affiliation": "Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece", 
        "name": "Alexandros Papadopoulos"
      }, 
      {
        "affiliation": "Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece", 
        "name": "Konstantinos Kyritsis"
      }, 
      {
        "affiliation": "Department of Neurology, Hippokration Hospital, Thessaloniki, Greece", 
        "name": "Sevasti Bostanjopoulou"
      }, 
      {
        "affiliation": "Department of Neurology, Technical University of Dresden, Dresden, Germany", 
        "name": "Lisa Klingelhoefer"
      }, 
      {
        "affiliation": "International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, UK", 
        "name": "Ray K. Chaudhuri"
      }, 
      {
        "affiliation": "Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece", 
        "name": "Anastasios Delopoulos"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3676524", 
        "relation": "isVersionOf"
      }
    ]
  }
}
56
108
views
downloads
All versions This version
Views 5656
Downloads 108108
Data volume 46.1 MB46.1 MB
Unique views 5151
Unique downloads 103103

Share

Cite as