Conference paper Open Access

Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection

Alexandros Papadopoulos; Konstantinos Kyritsis; Sevasti Bostanjopoulou; Lisa Klingelhoefer; Ray K. Chaudhuri; Anastasios Delopoulos


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3676525">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3676525</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3676525"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Alexandros Papadopoulos</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Konstantinos Kyritsis</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sevasti Bostanjopoulou</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Neurology, Hippokration Hospital, Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Lisa Klingelhoefer</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Neurology, Technical University of Dresden, Dresden, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Ray K. Chaudhuri</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, UK</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Anastasios Delopoulos</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Multimedia Understanding Group, Information Processing Laboratory, Dept. of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Multiple-Instance Learning for In-The-Wild Parkinsonian Tremor Detection</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/690494/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-07-31</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3676525"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3676525</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3676524"/>
    <dct:description>&lt;p&gt;Parkinson&amp;rsquo;s Disease (PD) is a neurodegenerative&amp;nbsp;disorder that manifests through slowly progressing symptoms,&amp;nbsp;such as tremor, voice degradation and bradykinesia. Automated&amp;nbsp;detection of such symptoms has recently received much attention&amp;nbsp;by the research community, owing to the clinical benefits associated with the early diagnosis of the disease. Unfortunately,&amp;nbsp;most of the approaches proposed so far, operate under a strictly&amp;nbsp;laboratory setting, thus limiting their potential applicability in&amp;nbsp;real world conditions. In this work, we present a method for automatically detecting tremorous episodes related to PD, based on acceleration signals. We propose to address the problem&amp;nbsp;at hand, as a case of Multiple-Instance Learning, wherein a&amp;nbsp;subject is represented as an unordered bag of signal segments&amp;nbsp;and a single, expert-provided, ground-truth. We employ a&amp;nbsp;deep learning approach that combines feature learning and a&amp;nbsp;learnable pooling stage and is trainable end-to-end. Results on&amp;nbsp;a newly introduced dataset of accelerometer signals collected&amp;nbsp;in-the-wild confirm the validity of the proposed approach.&amp;nbsp;&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3676525"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.5281/zenodo.3676525</dcat:accessURL>
        <dcat:byteSize>427186</dcat:byteSize>
        <dcat:downloadURL>https://zenodo.org/record/3676525/files/alpapado2019embc.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/690494/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">690494</dct:identifier>
    <dct:title>Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
27
53
views
downloads
All versions This version
Views 2727
Downloads 5353
Data volume 22.6 MB22.6 MB
Unique views 2424
Unique downloads 4949

Share

Cite as