Dataset Open Access

Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries

Doherty, Jessica; McNulty, David; Biswas, Subhajit; Moore, Kalani; Conroy, Michele; Bangert, Ursel; O'Dwyer, Colm; Holmes, Justin D.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Nanowire, Germanium-tin, Li-Ion Battery</subfield>
  </datafield>
  <controlfield tag="005">20200221072056.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Data from Nanotechnology, 2020, 31, 165402.</subfield>
  </datafield>
  <controlfield tag="001">3676445</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University College Cork, Ireland</subfield>
    <subfield code="a">McNulty, David</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University College Cork, Ireland</subfield>
    <subfield code="a">Biswas, Subhajit</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Limerick, Ireland</subfield>
    <subfield code="a">Moore, Kalani</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Limerick, Ireland</subfield>
    <subfield code="a">Conroy, Michele</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Limerick, Ireland</subfield>
    <subfield code="a">Bangert, Ursel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University College Cork, Ireland</subfield>
    <subfield code="a">O'Dwyer, Colm</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University College Cork, Ireland</subfield>
    <subfield code="a">Holmes, Justin D.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">607072</subfield>
    <subfield code="z">md5:1670eb7372ef01e5a78596748cc0c8a5</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Electrical Data_09062017 SnGe NWs Sample 24 0.2 C 1.5-0.01 V with CE.opj</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5232076</subfield>
    <subfield code="z">md5:480de5dfbc2fef4ce7d9c35a64f2aea1</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Electrical Data_09062017 SnGe NWs Sample 24 0.2 C 1.5-0.01 V.xlsx</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">13636810</subfield>
    <subfield code="z">md5:7c8441f3e46b773a0674e69e81098017</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Electrical Data_09062017 SnGe NWs Sample 24 0.2 C 1.5-0_C01.mpr</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1975080</subfield>
    <subfield code="z">md5:945118ba45a43dce4ca95c3eea86f193</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Electrical Data_09062017 SnGe NWs Sample 24 0.2 C dQdV Contour Maps wo Legend.opj</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1821118</subfield>
    <subfield code="z">md5:7cc07ca943b72b2e4453ac586d41dcc7</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Electrical Data_09062017 SnGe NWs Sample 24 0.2 C dQdV Stacked w 1st C and D.opj</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3882641</subfield>
    <subfield code="z">md5:0b4a6ad7e4b4faa3eea503f8afe6e12b</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Figure 1a_GeSn24SS_014.tif</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4202201</subfield>
    <subfield code="z">md5:ff990c467315f0e02b03e8c773d1adcd</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Figure 1b_HAADF STEM 20180619 Nano 1908.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">526807</subfield>
    <subfield code="z">md5:210ea17abe1d49377bb93cd778644379</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Figure 1c_EDS-HAADF Nano 2109-Ge.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">526807</subfield>
    <subfield code="z">md5:c729b7b2d1aac30f169edfff0e50a351</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Figure 1c_EDS-HAADF Nano 2109-GeSn.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">526807</subfield>
    <subfield code="z">md5:c2e963f3021381114ef43e357f928fde</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Figure 1c_EDS-HAADF Nano 2109-Sn.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4202201</subfield>
    <subfield code="z">md5:4cc5a1470820e39b5be5ac9cf4013266</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Figure 2a_HAADF STEM 20180619 Nano 1445.png</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">16806489</subfield>
    <subfield code="z">md5:a372873942b2132ac2b5b82f7b331bdb</subfield>
    <subfield code="u">https://zenodo.org/record/3676445/files/Figure 2b_HAADF STEM 20180619 Nano 1755 17.png</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:3676445</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">165402</subfield>
    <subfield code="n">16</subfield>
    <subfield code="p">Nanotechnology</subfield>
    <subfield code="v">31</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University College Cork, Ireland</subfield>
    <subfield code="a">Doherty, Jessica</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">14/IA/2513</subfield>
    <subfield code="a">Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;br&gt;
The combination of two active Li-ion materials (Ge and Sn) can result in improved conduction paths and higher capacity retention. Here we report for the first time, the implementation of Ge&lt;sub&gt;1&amp;ndash;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; alloy nanowires as anode materials for Li-ion batteries. Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; alloy nanowires have been successfully grown via vapor&amp;ndash;liquid&amp;ndash;solid technique directly on stainless steel current collectors. Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; (x = 0.048) nanowires were predominantly seeded from the Au&lt;sub&gt;0.80&lt;/sub&gt;Ag&lt;sub&gt;0.20&lt;/sub&gt; catalysts with negligible amount of growth was also directly catalyzed from stainless steel substrate. The electrochemical performance of the the Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; nanowires as an anode material for Li-ion batteries was investigated via galvanostatic cycling and detailed analysis of differential capacity plots (DCPs). The nanowire electrodes demonstrated an exceptional capacity retention of 93.4% from the 2nd to the 100th charge at a C/5 rate, while maintaining a specific capacity value of &amp;sim;921 mAh g&amp;minus;1 after 100 cycles. Voltage profiles and DCPs revealed that the Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; nanowires behave as an alloying mode anode material, as reduction/oxidation peaks for both Ge and Sn were observed, however it is clear that the reversible lithiation of Ge is responsible for the majority of the charge stored.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1088/1361-6528/ab6678</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
93
54
views
downloads
Views 93
Downloads 54
Data volume 185.3 MB
Unique views 65
Unique downloads 39

Share

Cite as