Dataset Open Access
Doherty, Jessica; McNulty, David; Biswas, Subhajit; Moore, Kalani; Conroy, Michele; Bangert, Ursel; O'Dwyer, Colm; Holmes, Justin D.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3676445</identifier> <creators> <creator> <creatorName>Doherty, Jessica</creatorName> <givenName>Jessica</givenName> <familyName>Doherty</familyName> <affiliation>University College Cork, Ireland</affiliation> </creator> <creator> <creatorName>McNulty, David</creatorName> <givenName>David</givenName> <familyName>McNulty</familyName> <affiliation>University College Cork, Ireland</affiliation> </creator> <creator> <creatorName>Biswas, Subhajit</creatorName> <givenName>Subhajit</givenName> <familyName>Biswas</familyName> <affiliation>University College Cork, Ireland</affiliation> </creator> <creator> <creatorName>Moore, Kalani</creatorName> <givenName>Kalani</givenName> <familyName>Moore</familyName> <affiliation>University of Limerick, Ireland</affiliation> </creator> <creator> <creatorName>Conroy, Michele</creatorName> <givenName>Michele</givenName> <familyName>Conroy</familyName> <affiliation>University of Limerick, Ireland</affiliation> </creator> <creator> <creatorName>Bangert, Ursel</creatorName> <givenName>Ursel</givenName> <familyName>Bangert</familyName> <affiliation>University of Limerick, Ireland</affiliation> </creator> <creator> <creatorName>O'Dwyer, Colm</creatorName> <givenName>Colm</givenName> <familyName>O'Dwyer</familyName> <affiliation>University College Cork, Ireland</affiliation> </creator> <creator> <creatorName>Holmes, Justin D.</creatorName> <givenName>Justin D.</givenName> <familyName>Holmes</familyName> <affiliation>University College Cork, Ireland</affiliation> </creator> </creators> <titles> <title>Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Nanowire, Germanium-tin, Li-Ion Battery</subject> </subjects> <dates> <date dateType="Issued">2020-01-28</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3676445</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1088/1361-6528/ab6678</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p><strong>Abstract</strong><br> The combination of two active Li-ion materials (Ge and Sn) can result in improved conduction paths and higher capacity retention. Here we report for the first time, the implementation of Ge<sub>1&ndash;x</sub>Sn<sub>x</sub> alloy nanowires as anode materials for Li-ion batteries. Ge<sub>1&minus;x</sub>Sn<sub>x</sub> alloy nanowires have been successfully grown via vapor&ndash;liquid&ndash;solid technique directly on stainless steel current collectors. Ge<sub>1&minus;x</sub>Sn<sub>x</sub> (x = 0.048) nanowires were predominantly seeded from the Au<sub>0.80</sub>Ag<sub>0.20</sub> catalysts with negligible amount of growth was also directly catalyzed from stainless steel substrate. The electrochemical performance of the the Ge<sub>1&minus;x</sub>Sn<sub>x</sub> nanowires as an anode material for Li-ion batteries was investigated via galvanostatic cycling and detailed analysis of differential capacity plots (DCPs). The nanowire electrodes demonstrated an exceptional capacity retention of 93.4% from the 2nd to the 100th charge at a C/5 rate, while maintaining a specific capacity value of &sim;921 mAh g&minus;1 after 100 cycles. Voltage profiles and DCPs revealed that the Ge<sub>1&minus;x</sub>Sn<sub>x</sub> nanowires behave as an alloying mode anode material, as reduction/oxidation peaks for both Ge and Sn were observed, however it is clear that the reversible lithiation of Ge is responsible for the majority of the charge stored.</p></description> <description descriptionType="Other">Data from Nanotechnology, 2020, 31, 165402.</description> </descriptions> <fundingReferences> <fundingReference> <funderName>Science Foundation Ireland</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100001602</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/">14/IA/2513</awardNumber> <awardTitle>Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 93 |
Downloads | 54 |
Data volume | 185.3 MB |
Unique views | 65 |
Unique downloads | 39 |