Dataset Open Access

Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries

Doherty, Jessica; McNulty, David; Biswas, Subhajit; Moore, Kalani; Conroy, Michele; Bangert, Ursel; O'Dwyer, Colm; Holmes, Justin D.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3676445</identifier>
  <creators>
    <creator>
      <creatorName>Doherty, Jessica</creatorName>
      <givenName>Jessica</givenName>
      <familyName>Doherty</familyName>
      <affiliation>University College Cork, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>McNulty, David</creatorName>
      <givenName>David</givenName>
      <familyName>McNulty</familyName>
      <affiliation>University College Cork, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Biswas, Subhajit</creatorName>
      <givenName>Subhajit</givenName>
      <familyName>Biswas</familyName>
      <affiliation>University College Cork, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Moore, Kalani</creatorName>
      <givenName>Kalani</givenName>
      <familyName>Moore</familyName>
      <affiliation>University of Limerick, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Conroy, Michele</creatorName>
      <givenName>Michele</givenName>
      <familyName>Conroy</familyName>
      <affiliation>University of Limerick, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Bangert, Ursel</creatorName>
      <givenName>Ursel</givenName>
      <familyName>Bangert</familyName>
      <affiliation>University of Limerick, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>O'Dwyer, Colm</creatorName>
      <givenName>Colm</givenName>
      <familyName>O'Dwyer</familyName>
      <affiliation>University College Cork, Ireland</affiliation>
    </creator>
    <creator>
      <creatorName>Holmes, Justin D.</creatorName>
      <givenName>Justin D.</givenName>
      <familyName>Holmes</familyName>
      <affiliation>University College Cork, Ireland</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Nanowire, Germanium-tin, Li-Ion Battery</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-01-28</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3676445</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1088/1361-6528/ab6678</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt;&lt;br&gt;
The combination of two active Li-ion materials (Ge and Sn) can result in improved conduction paths and higher capacity retention. Here we report for the first time, the implementation of Ge&lt;sub&gt;1&amp;ndash;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; alloy nanowires as anode materials for Li-ion batteries. Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; alloy nanowires have been successfully grown via vapor&amp;ndash;liquid&amp;ndash;solid technique directly on stainless steel current collectors. Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; (x = 0.048) nanowires were predominantly seeded from the Au&lt;sub&gt;0.80&lt;/sub&gt;Ag&lt;sub&gt;0.20&lt;/sub&gt; catalysts with negligible amount of growth was also directly catalyzed from stainless steel substrate. The electrochemical performance of the the Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; nanowires as an anode material for Li-ion batteries was investigated via galvanostatic cycling and detailed analysis of differential capacity plots (DCPs). The nanowire electrodes demonstrated an exceptional capacity retention of 93.4% from the 2nd to the 100th charge at a C/5 rate, while maintaining a specific capacity value of &amp;sim;921 mAh g&amp;minus;1 after 100 cycles. Voltage profiles and DCPs revealed that the Ge&lt;sub&gt;1&amp;minus;x&lt;/sub&gt;Sn&lt;sub&gt;x&lt;/sub&gt; nanowires behave as an alloying mode anode material, as reduction/oxidation peaks for both Ge and Sn were observed, however it is clear that the reversible lithiation of Ge is responsible for the majority of the charge stored.&lt;/p&gt;</description>
    <description descriptionType="Other">Data from Nanotechnology, 2020, 31, 165402.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>Science Foundation Ireland</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100001602</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/">14/IA/2513</awardNumber>
      <awardTitle>Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
93
54
views
downloads
Views 93
Downloads 54
Data volume 185.3 MB
Unique views 65
Unique downloads 39

Share

Cite as