Conference paper Open Access
Dimitrios Iakovakis;
Stelios Hadjidimitriou;
Vasileios Charisis;
Sevasti Bostanjopoulou;
Zoe Katsarou;
Lisa Klingelhoefer;
Simone Mayer;
Heinz Reichmann;
Sofia B. Dias;
José A. Diniz;
Dhaval Trivedi;
Ray K. Chaudhuri;
Leontios J. Hadjileontiadis
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20200324131812.0</controlfield> <controlfield tag="001">3675381</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Aristotle University of Thessaloniki</subfield> <subfield code="a">Stelios Hadjidimitriou</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Aristotle University of Thessaloniki</subfield> <subfield code="a">Vasileios Charisis</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Neurology, Hippokration Hospital</subfield> <subfield code="a">Sevasti Bostanjopoulou</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Neurology, Hippokration Hospital Thessaloniki</subfield> <subfield code="a">Zoe Katsarou</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Neurology Technical University Dresden</subfield> <subfield code="a">Lisa Klingelhoefer</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Neurology Technical University Dresden</subfield> <subfield code="a">Simone Mayer</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Department of Neurology Technical University Dresden</subfield> <subfield code="a">Heinz Reichmann</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Faculdade de Motricidade Humana Universidade de Lisboa</subfield> <subfield code="a">Sofia B. Dias</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Faculdade de Motricidade Humana Universidade de Lisboa</subfield> <subfield code="a">José A. Diniz</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, United Kingdom</subfield> <subfield code="a">Dhaval Trivedi</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, United Kingdom</subfield> <subfield code="a">Ray K. Chaudhuri</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Aristotle University of Thessaloniki</subfield> <subfield code="a">Leontios J. Hadjileontiadis</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">4982892</subfield> <subfield code="z">md5:5f159502f320c7eea8629c3cdaf09f3f</subfield> <subfield code="u">https://zenodo.org/record/3675381/files/EMBC_Keystroke_Dynamics_Final_212019.docx</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-07-28</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:3675381</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Aristotle University of Thessaloniki</subfield> <subfield code="0">(orcid)0000-0002-6854-5942</subfield> <subfield code="a">Dimitrios Iakovakis</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Early Parkinson's Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">690494</subfield> <subfield code="a">Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Parkinson&rsquo;s Disease (PD) is the second most&nbsp;common neurodegenerative disorder worldwide, causing both&nbsp;motor and non-motor&nbsp; symptoms. In the early stages, symptoms&nbsp;are mild and patients may ignore their existence. As a result,&nbsp;they do not undergo any related clinical examination; hence delaying their PD diagnosis. In an effort to remedy such delay,&nbsp;analysis of data passively&nbsp; captured from user&rsquo;s interaction with&nbsp;consumer technologies has been recently explored towards&nbsp;remote screening of early PD motor signs. In the current study,&nbsp;a smartphone-based method analyzing subjects&rsquo; finger&nbsp;interaction with the smartphone screen is developed for the&nbsp;quantification of fine-motor skills decline in early PD using&nbsp;Convolutional Neural Networks. Experimental results from the&nbsp;analysis of keystroke typing in-the-clinic data from 18 early PD&nbsp;patients and 15 healthy controls have shown a classification<br> performance of 0.89 Area Under the Curve (AUC) with 0.79/0.79&nbsp;sensitivity/specificity, respectively. Evaluation of the&nbsp;generalization ability of the proposed approach was made by its&nbsp;application on typing data arising from a separate self-reported&nbsp;cohort of 27 PD patients&rsquo; and 84 healthy controls&rsquo; daily usage&nbsp;with their personal smartphones (data in-the-wild), achieving&nbsp;0.79 AUC with 0.74/0.78 sensitivity/specificity, respectively. The&nbsp;results show the potentiality of the proposed approach to process&nbsp;keystroke dynamics arising from users&rsquo; natural typing activity&nbsp;to detect PD, which contributes to the development of digital&nbsp;tools for remote pathological symptom screening.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.3675380</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.3675381</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 69 | 69 |
Downloads | 7 | 7 |
Data volume | 34.9 MB | 34.9 MB |
Unique views | 62 | 62 |
Unique downloads | 7 | 7 |