Conference paper Open Access
Dimitrios Iakovakis;
Stelios Hadjidimitriou;
Vasileios Charisis;
Sevasti Bostanjopoulou;
Zoe Katsarou;
Lisa Klingelhoefer;
Simone Mayer;
Heinz Reichmann;
Sofia B. Dias;
José A. Diniz;
Dhaval Trivedi;
Ray K. Chaudhuri;
Leontios J. Hadjileontiadis
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3675381</identifier> <creators> <creator> <creatorName>Dimitrios Iakovakis</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6854-5942</nameIdentifier> <affiliation>Aristotle University of Thessaloniki</affiliation> </creator> <creator> <creatorName>Stelios Hadjidimitriou</creatorName> <affiliation>Aristotle University of Thessaloniki</affiliation> </creator> <creator> <creatorName>Vasileios Charisis</creatorName> <affiliation>Aristotle University of Thessaloniki</affiliation> </creator> <creator> <creatorName>Sevasti Bostanjopoulou</creatorName> <affiliation>Department of Neurology, Hippokration Hospital</affiliation> </creator> <creator> <creatorName>Zoe Katsarou</creatorName> <affiliation>Department of Neurology, Hippokration Hospital Thessaloniki</affiliation> </creator> <creator> <creatorName>Lisa Klingelhoefer</creatorName> <affiliation>Department of Neurology Technical University Dresden</affiliation> </creator> <creator> <creatorName>Simone Mayer</creatorName> <affiliation>Department of Neurology Technical University Dresden</affiliation> </creator> <creator> <creatorName>Heinz Reichmann</creatorName> <affiliation>Department of Neurology Technical University Dresden</affiliation> </creator> <creator> <creatorName>Sofia B. Dias</creatorName> <affiliation>Faculdade de Motricidade Humana Universidade de Lisboa</affiliation> </creator> <creator> <creatorName>José A. Diniz</creatorName> <affiliation>Faculdade de Motricidade Humana Universidade de Lisboa</affiliation> </creator> <creator> <creatorName>Dhaval Trivedi</creatorName> <affiliation>International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, United Kingdom</affiliation> </creator> <creator> <creatorName>Ray K. Chaudhuri</creatorName> <affiliation>International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, London, United Kingdom</affiliation> </creator> <creator> <creatorName>Leontios J. Hadjileontiadis</creatorName> <affiliation>Aristotle University of Thessaloniki</affiliation> </creator> </creators> <titles> <title>Early Parkinson's Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-07-28</date> </dates> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3675381</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3675380</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Parkinson&rsquo;s Disease (PD) is the second most&nbsp;common neurodegenerative disorder worldwide, causing both&nbsp;motor and non-motor&nbsp; symptoms. In the early stages, symptoms&nbsp;are mild and patients may ignore their existence. As a result,&nbsp;they do not undergo any related clinical examination; hence delaying their PD diagnosis. In an effort to remedy such delay,&nbsp;analysis of data passively&nbsp; captured from user&rsquo;s interaction with&nbsp;consumer technologies has been recently explored towards&nbsp;remote screening of early PD motor signs. In the current study,&nbsp;a smartphone-based method analyzing subjects&rsquo; finger&nbsp;interaction with the smartphone screen is developed for the&nbsp;quantification of fine-motor skills decline in early PD using&nbsp;Convolutional Neural Networks. Experimental results from the&nbsp;analysis of keystroke typing in-the-clinic data from 18 early PD&nbsp;patients and 15 healthy controls have shown a classification<br> performance of 0.89 Area Under the Curve (AUC) with 0.79/0.79&nbsp;sensitivity/specificity, respectively. Evaluation of the&nbsp;generalization ability of the proposed approach was made by its&nbsp;application on typing data arising from a separate self-reported&nbsp;cohort of 27 PD patients&rsquo; and 84 healthy controls&rsquo; daily usage&nbsp;with their personal smartphones (data in-the-wild), achieving&nbsp;0.79 AUC with 0.74/0.78 sensitivity/specificity, respectively. The&nbsp;results show the potentiality of the proposed approach to process&nbsp;keystroke dynamics arising from users&rsquo; natural typing activity&nbsp;to detect PD, which contributes to the development of digital&nbsp;tools for remote pathological symptom screening.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/690494/">690494</awardNumber> <awardTitle>Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 69 | 69 |
Downloads | 7 | 7 |
Data volume | 34.9 MB | 34.9 MB |
Unique views | 62 | 62 |
Unique downloads | 7 | 7 |