Poster Open Access

Towards unobtrusive Parkinson's disease detection via motor symptoms severity inference from multimodal smartphone-sensor data

Dimitrios Iakovakis; Stelios Hadjidimitriou; Vasileios Charisis; Konstantinos Kyritsis; Alexandros Papadopoulos; Michael Stadtschnitzer; Hagen Jaeger; Ioannis Dagklis; Sevasti Bostantjopoulou; Zoe Katsarou; Lisa Klingelhoefer; Simone Mayer; Heinz Reichmann; Dhaval Trivedi; Aleksandra Podlewska; Alexandra Rizos; Karrol Ray Chaudhuri; Anastasios Delopoulos; Leontios J. Hadjileontiadis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200219192055.0</controlfield>
  <controlfield tag="001">3675352</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aristotle University of Thessaloniki</subfield>
    <subfield code="a">Stelios Hadjidimitriou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aristotle University of Thessaloniki</subfield>
    <subfield code="a">Vasileios Charisis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aristotle University of Thessaloniki</subfield>
    <subfield code="a">Konstantinos Kyritsis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aristotle University of Thessaloniki</subfield>
    <subfield code="a">Alexandros Papadopoulos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer IAIS, Schloß Birlinghoven</subfield>
    <subfield code="a">Michael Stadtschnitzer</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer IAIS, Schloß Birlinghoven</subfield>
    <subfield code="a">Hagen Jaeger</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">G. Papanikolaou Hospital, 3rd Neurological Clinic</subfield>
    <subfield code="a">Ioannis Dagklis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">G. Papanikolaou Hospital, 3rd Neurological Clinic</subfield>
    <subfield code="a">Sevasti Bostantjopoulou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Neurology, Hippokration Hospital, Thessaloniki, Greece</subfield>
    <subfield code="a">Zoe Katsarou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Neurology, Technical University Dresden</subfield>
    <subfield code="a">Lisa Klingelhoefer</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Neurology, Technical University Dresden</subfield>
    <subfield code="a">Simone Mayer</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Neurology, Technical University Dresden</subfield>
    <subfield code="a">Heinz Reichmann</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">King's College Hospital NHS Foundation Trust</subfield>
    <subfield code="a">Dhaval Trivedi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">King's College Hospital NHS Foundation Trust,</subfield>
    <subfield code="a">Aleksandra Podlewska</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">King's College Hospital NHS Foundation Trust,</subfield>
    <subfield code="a">Alexandra Rizos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">King's College Hospital NHS Foundation Trust,</subfield>
    <subfield code="a">Karrol Ray Chaudhuri</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aristotle University of Thessaloniki</subfield>
    <subfield code="a">Anastasios Delopoulos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Khalifa University of Science and Technology, Aristotle University of Thessaloniki</subfield>
    <subfield code="a">Leontios J. Hadjileontiadis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">422083</subfield>
    <subfield code="z">md5:cfa9e9b9fe39d62c391d7870885bc35a</subfield>
    <subfield code="u">https://zenodo.org/record/3675352/files/Poster_Nice.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-10-01</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3675352</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Aristotle University of Thessaloniki</subfield>
    <subfield code="0">(orcid)0000-0002-6854-5942</subfield>
    <subfield code="a">Dimitrios Iakovakis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Towards unobtrusive Parkinson's disease detection via motor symptoms severity inference from multimodal smartphone-sensor data</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">690494</subfield>
    <subfield code="a">Intelligent Parkinson eaRly detectiOn Guiding NOvel Supportive InterventionS</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Objective: To provide clinically-corroborated evidence of the Parkinson&amp;rsquo;s disease (PD) diagnostic potential of machine learning-based approaches for motor symptoms severity inference via multimodal data, passively captured during the natural use of smartphones.&lt;/p&gt;

&lt;p&gt;Background: PD symptoms can be mild in the early stages and they usually go unnoticed, leaving the disease undiagnosed for years [1]. Subtle motor manifestations may start five to six years prior to PD clinical diagnosis and thereafter progress quickly [2]. Motor impairment affects daily activities and can severely impact patients&amp;rsquo; quality over the course of the disease. Information derived from mobile electronic sensors can provide, via algorithmic transformation, objective and dense information of an individual&amp;rsquo;s motor status, allowing for frequent relevant symptoms early screening and subsequent monitoring.&lt;br&gt;
Methodology: We analyzed longitudinal recordings of tri-axial accelerometer, voice and keystroke timing data, captured passively from 70 PD patients and healthy controls (HC), in their daily life via the iPrognosis Android smartphone application, for relevant motor symptoms severity inference.&lt;br&gt;
The proposed methods for motor symptoms inference show promising PD diagnostic performance in our relatively small clinically-evaluated cohorts. Our results highlight the potential of evolving these methods into an objective PD screening/monitoring tool that could support clinical diagnosis, drug response assessment and decision-making. Passive capturing of the required input data further fosters evaluation of individuals&amp;rsquo; natural behavior, as well as long-term adherence&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3675351</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3675352</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
43
31
views
downloads
All versions This version
Views 4343
Downloads 3131
Data volume 13.1 MB13.1 MB
Unique views 3737
Unique downloads 2727

Share

Cite as