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Abstract—Modern hearing aids (HAs) are not simple pas-
sive sound enhancers, but rather complex devices that can
log (via smart-phones) multivariate real-time data from the
acoustic environment of a user. In the EVOTION project
(www.h2020evotion.eu) such hearing aids are integrated with a
Big Data analytics (BDA) platform to bring about ecologically
valid evidence for policy-making within the hearing healthcare
sector. Here, we present the background of the BDA platform and
a concrete case study of how longitudinally sampled data from
HAs can 1) support hypotheses about HA usage prognosis, and
2) bring new knowledge of how HAs are used across a typical
day. In five participants, we found that the hourly HA usage
was negatively associated with both the mean and the variance
of the signal-to-noise ratio, and that increases in the daily total
HA usage were associated with higher and more diverse sound
levels.

Index Terms—hearing aids, Big Data analytics, mixed models,
multilevel clustered data, evidence-based public-health policies

I. INTRODUCTION

Hearing loss (HL) affects approximately one-third of people
over the age of 65 and 5% of the world’s population [1].
In addition, disabling HL is associated with early cognitive
decline in older adults [2], and if unaddressed, HL restricts
social integration and educational and employment opportuni-
ties, hampers emotional well-being and poses an economic
challenge at both the individual and national levels [3].
Moreover, HL prevalence is on the rise worldwide, primarily
due to increased noise exposure and increase in the aging
population [1]. Thus, HL poses a rising threat to the overall
health and well-being of a large part of the general population
and to the economic stability of healthcare sectors worldwide.

On the other hand, advances in generating health-related
data by devices and sensors together with the development
of technology and methodologies for processing large data-
sets (i.e. so-called Big Data) now permits the realization of
data-driven solutions better adapted to aid individuals affected
by HL [4]. Research and developments aiming to support
traditional healthcare solutions with management strategies
informed by Big Data now abounds [5], [6]. In this paper,
we consider how modern hearing aids (HAs) combined with a
platform for processing Big Data could improve the treatment
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of HL both on the level of the individual and of the general
population.

Specifically, today, the leading management strategy for the
majority of patients with HL is the provision of HAs. The
use of HAs improves general health-related quality of life and
hearing-specific quality of life associated with participation
in daily activities and listening abilities [7]. However, HA
users still face significant challenges, such as listening in
noisy environments, poor sound quality, and difficulty to select
among predefined programs and settings [8], which to a large
part can be ascribed to ineffective or poorly fitted HAs. Ideally,
HA fitting should adapt to the challenging and changing
situations for individual HA users on a continuous basis rather
than apply a “one-size fits all” strategy [9].

Given today’s technologically advanced HAs, it is now
possible to integrate them in a data-driven framework. This
enables hearing care professionals to: 1) collect a rich set of
information from patients with HL and their environment, 2)
extract knowledge from data with preset analytics (e.g., HAs
daily usage patterns), and 3) discover factors for low HAs
usage and, for instance, correlations with the acoustic environ-
ment. As a result, HL patients using HAs could benefit from
HAs adapting to the variable conditions of the environment
and offering a more natural usage experience, which in turn
ultimately increase the average usage of HAs and, thus, the
benefit they produce to the quality of life. On top of that, novel
data-insights regarding determining factors for successful HA
uptake could help public-health policy-makers and healthcare
administrators with making informed decisions.

The work presented in this paper is part of the on-
going research project ‘EVidence-based management of hear-
ing impairments: public health pOlicy making based on
fusing Big Data analytics and simulatTON’ (EVOTION;
www.h2020evotion.eu), which aims to build the evidence
base for the formulation of public health policies related
to the prevention, early diagnosis, long-term treatment and
rehabilitation of HL [10].

We first discuss some relevant works in the context of Big
Data platforms for healthcare and of HAs. Next, we present
a short summary of the Big Data analytics (BDA) platform
developed in the EVOTION project. Lastly, we introduce
a case study concerning five patients with HL and present



novel insights of HA usage behavior derived from modeling
longitudinally sampled HA data.

II. RELATED WORKS

Evidence-based and data-driven public health policies have
attracted remarkable attention in the last years both in the
medical and in the data science communities, witnessed by
related projects and publications [11]–[16]. What all these
publication have in common is that they consider Big Data
techniques as useful tools in translating personalized medicine
initiatives into clinical practice. This is done by offering
the opportunity to use analytic capabilities over highly het-
erogeneous data of different origin. For example, medical
analyses could be improved by linking health-related data
(e.g., medication list and family history) to lifestyle data (e.g.,
income, education, neighborhood, military service, diet habits,
sport activity, entertainment) and to environmental data (e.g.
polluted or noisy workplaces).

Moreover, a novel stream of data is increasingly available
from sensors and medical devices, providing even more oppor-
tunities to study correlations between multiple factors related
to healthcare [17], [18]. However, as also indicated in a report
by the Institute of Medicine (IoM), several open problems still
remains [19].

With respect to hearing healthcare and the problem of
hearing loss, Big Data approaches are still underexplored.
The most relevant work, up to now, was presented by Mellor,
Stone, & Keane [4], [20] as ”proof-of-concept” examples of
how BDA methods could be used to gain data-insights from
healthcare data, and they went on showing how clustering
methods applied to a large data-set containing a number of
variables concerning hearing aid users could be used to mine
for interesting patterns. For example, the authors found that
specific hearing aid settings (i.e. gain-reduction profiles) could
be associated with specific distributions of sound pressure
levels of the acoustic environment.

However, no other attempts at integrating a BDA framework
with real-time data-feeds from hearing aids for holistic care
of hearing loss patients have been made to date.

III. BDA TECHNOLOGY

Figure 1 shows the main components of the Big Data
platform developed in EVOTION, which is based on the
Apache Foundation ecosystem [21]. Here, we briefly describe
the crucial components:

Hadoop - YARN: Hadoop is a tool for data-intensive
distributed applications, based on the YARN programming
model and a distributed file system called Hadoop Distributed
Filesystem (HDFS) [22]. Hadoop allows writing applications
that rapidly process large amounts of data on large clusters of
compute nodes. YARN permits a division of the input data-
set into independent subsets that are processed in parallel (i.e.
batch processing) [23].

HBase: A database engine built on Hadoop and modeled
after Google’s Big Table [24]. HBase is optimized for real-
time data access to large tables with up to billions of rows.
Among other features, it offers support for interfacing Hive.
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Fig. 1. Big Data platform technologies.

Hive: A data warehousing infrastructure, which runs on
top of Hadoop. Hive provides a language called Hive QL to
organize, aggregate, and run queries on data-sets [25]. Hive QL
is similar to SQL, it uses a declarative programming model
and results are described in one big query. HQL queries can
be broken down by Hive to communicate to MapReduce jobs
executed across a Hadoop cluster.

Spark: A general purpose cluster computing engine
providing APIs to various programming languages such as
Java, Python, or Scala [26]. Spark is specialized at making
data analysis faster, it supports in-memory computing that
enables it to query data much faster compared to disk-based
engines such as Hadoop, and it also offers a general execution
model that can optimize arbitrary operator graphs. Spark also
offer several tools, such as machine learning tool Mllib [27],
structured data processing, Spark SQL, graph processing tool
Graph X, stream processing engine called Spark Streaming,
and Shark for fast interactive question device.

Zeppelin: A web based and multipurpose notebook
that enables interactive data analytics (Apache Zeppelin:
https://zeppelin.apache.org). The notebook is the place for data
ingestion, discovery, analytics, visualization and collaboration.
Zeppelin supports many interpreters such as Apache Spark,
Python, JDBC, Markdown and Shell.

IV. BDA DESIGN

The BDA components within the EVOTION project is
mainly focused on the execution of preset analytics over the
data collected from the patients recruited for clinical trials
(see section V). However, the overall goal of EVOTION is to
support policy makers in the definition of public-health poli-
cies (PHPs) specified through the definition of data analytic
workflows (DAWs) expressed in a proprietary language. A
comprehensive presentation of policy specification, execution,
and links to data analytics, as well as the whole EVOTION
architecture is out of the scope of the present paper. Although,
in order to illustrate how the BDA supports the execution
of analytics based on data-feeds from HAs, we here shortly
describe a DAW and the concepts of BDA interfacing.

A. Data analytic workflows

A DAW is an ordered sequence of Data Analytic Tasks (just
Tasks in the following) of the following types:



• Data Processing Tasks: Including data preparation like
data source selection for feature reduction, data cleaning,
or data type transformation.

• Statistical Analysis Tasks: Performing statistical analysis
on a data-set like ANOVA, Breusch-Pagan Test, etc.

• Data Mining Tasks: Exploiting supervised or unsuper-
vised algorithms (e.g., Random Forest, K-means) for
clustering and machine learning.

DAWs in EVOTION could be serialized (i.e., the output of
one DAW inputs a consecutive one, for instance, one may
select features and the following may compute a cluster)
and they could mix automatic and human actions. That way,
workflows could be defined as consecutive DAWs and human
interventions, for example when policy makers or clinicians
evaluate intermediate results and request further analysis. The
logical of a DAW is implemented as a procedural workflow
and translated into an executable form called Executable
DAW (EDAW in the following). Thus, the core mechanism
implemented by the BDA platform enables the execution of
analytics based on two main subsystem catalogues (see details
next section):

• Task Catalogue: A lists of Tasks for which an executable
implementation is available. For instance, an entry in
the Task Catalogue could be Spark_ANOVA, a specific
implementation of an ANOVA.

• Workflow Catalogue: A lists of available EDAWs, each
representing logical workflows of Tasks to be executed.
An EDAW can be scheduled (e.g. run every month) and
also trigger the execution of other EDAWs (for example
based on new incoming data).

B. Task Catalogue

The Task Catalogue handles the list of available imple-
mented analytic tasks that can be composed into EDAWs to
produce analytic algorithms. An implemented analytic task
includes the following attributes: Unique ID, Task name,
name and version of required software libraries, programming
language used for the development, path of source code/ex-
ecutable, details on dependencies (e.g., another task to be
extended) if any, and a textual description of the algorithm.

In addition, the Task Catalogue offers APIs for managing
the stored implementations (add, delete, modify).

C. Workflow Catalogue

The Workflow Catalogue handles the EDAWs and is com-
posed of three sub-components: 1) the Catalogue repository of
EDAWs, 2) the Workflow Scheduler scheduling the execution
of EDAWs according to the specification given (i.e., periodic,
upon request, or driven by data changes), and 3) the Workflow
Manager, which is responsible for keeping track of the running
EDAWs.

An EDAW includes the following attributes: Unique ID;
EDAW name; the list of implemented analytic tasks; a list
of parameters for each task and global parameters for the
Workflow; the language used for the development (e.g., Scala,
Java) and the Orchestrator adopted for the orchestration (e.g.,

Oozie, Scala); the path to the source/executable code or
the path of the Orchestration metadescription; the Workflow
Execution Type (on request, scheduled, driven by data change)
and corresponding parameters; and a textual description of the
Workflow purpose and characteristics.

D. BDA interfacing

The BDA platform is a core component of an extended
framework whose main goal is to support stakeholders (i.e.,
policy makers, clinicians) during the definition of PHPs.
Therefore, an interactive process between users and the BDA
is taking place. For illustration purposes, we sketches the steps
required to execute a certain Big Data analytics workflow
(EDAW).

The actor is a policy maker or a clinician interacting through
a graphical dashboard for the specification of the PHP instance
to be processed (see Figure 2). This includes the selection of
a given PHP model from a catalogue and the specification
of actual parameters, data-types, and other conditions for
processing the model. Thus, a policy model contains a DAW
that specifies what operations are to be performed on the
data. After the actor has specified all required information
and defined the scheduling, the BDA framework transform
at run-time the DAW expressed in declarative language into
an EDAW, as a set of executable directives. To perform this
transformation, executable analytics are retrieved from the
Task Catalogue (see Figure 2). From the Workflow Catalogue,
directives for the execution of the EDAW are retrieved and
used by the scheduler subsystem. During execution of the
EDAW, notifications are sent to the dashboard to let the user
receive information about the ongoing processing.

In the next section, we present a case study demonstrating
how consecutive operational steps, as those defined in a
workflow, underpin a PHP model. In this case, the PHP model
attempts to discover factors causing low HA usage.

Fig. 2. Conceptualization of BDA interfaces. A stakeholder interacts with the
BDA dashboard to define a policy model. The selected model (e.g. association
of education and gender on HA use satisfaction) can consist of several pre-
defined and custom tasks that make up a workflow. The workflows (DAWs)
are executed according to a time-manager (e.g. once; every week; triggered
by new data).



V. HEARING AID CASE STUDY

Several studies have found that demographic and self-
reported factors predict the success of treatment with a HA.
Typically, success of HA treatment equates HA uptake as
usage in hours per day. [28] [29]. However, these studies are
confounded by the fact that HA users tend to overestimate their
HA usage as they report using their HAs more than what is
measured by automatic HA logs [10]. It is thus important to
use objective data logging of HA use for accurate information.
In addition, Laplante-Levesque et al. [30] showed that patterns
of HA use (i.e. “how” is the HA used) are at least as important
in predicting HA outcomes as the duration of HA use (i.e.
“how much” is the HA used). A fact that advocates the use
of real-time longitudinal data-logging that will enable a more
detailed tracking of usage patterns.

In EVOTION, participants with varying degrees of HL
(N >1000) are supplied with “smart” HAs that measure
and log the acoustic environment of a user each minute
of use. This longitudinal real-time data feeds into a data-
repository and enables a fusion with clinical and demographic
data concerning each participant. Thus, analysis of data from
EVOTION will 1) shed light on individualized HA usage
and preferences; 2) enable a better understanding of factors
influencing HA outcomes of a population (e.g. dynamics of
the acoustic environment) and 3) support public-health policy-
makers with ecologically valid factual evidence of HA user
profiles and usage characteristics.

In the following sections, we show that modeling of data
from EVOTION with linear mixed-models (LMMs) can help
identifying external factors influencing HA usage.

A. Data
We use a data-set from a study at Eriksholm Research

Centre (part of Oticon A/S, Denmark), which includes five
participants with hearing loss that wear identical HAs as
the ones provisioned in EVOTION. Thus, this data-set is
representative of the type of data collected in EVOTION. In
the study, participants were given a pair of Oticon EVOTION
hearing aids (based on the Oticon OpnTM ) and a Bluetooth
connected smart-phone [31]. During normal HA use, the
smart-phone logged a data-vector of 20 acoustic parameters
(recorded by the HA) and a time-stamp every minute. The
data-vector includes five sound characteristics consisting of the
momentary sound pressure level (SPL), signal-to-noise ratio
(SNR), noise floor (Nf ), Modulation Index (MI), and the Mod-
ulation Envelope (ME). Each characteristic were measured in
four frequency bands: 0-1.3kHz; 1.3-4.1kHz; 4.1-10kHz; 0-
10kHz, however, for simplicity, we only use the full-bandwidth
(0-10kHz) data.

Given the longitudinal data, we can investigate both how
HA users use their HAs and how much they use them. These
two scenarios lead to the following aggregation of data:

• HA usage in minutes per hour.
• HA usage in hours per day.

HA usage in min/hour were derived by accumulating the
time-stamps within each two-hour period from 0AM-11PM.

E.g., the HA usage for 1PM is derived of time-stamps from
12:00PM to 1:59PM. In turn, HA usage for 2PM consists of
time-stamps from 1PM to 2:59PM, ensuring one hour overlap
for each data-point. The hourly HA usage were then averaged
across all recorded days (the average amount of days was
40.2 with 10.5 days SD). Usage in hours/day were derived by
accumulating the time-stamps across all hours within each day.
Similarly, the acoustic parameters are represented by averages
either within hours or days. In addition, we computed the
variance of the SPL (SPLvar) and the SNR (SNRvar) across
both hours and days. Thus, the data-set has multilevel grouping
(e.g. hours, days, participant ID, hearing loss, gender) and each
grouping contain a different number of samples (e.g. some
participants were enrolled in the study for longer than others).

B. Hypothesis

One of the sub-goals of EVOTION is to support a PHP
model that describes the impact of environmental factors to
HA use and outcomes [10]. Such description will enable more
individualized hearing healthcare and improve the general
knowledge about the environmental difficulties that a HA user
faces.

In the current study, we hypothesize that HA usage is pre-
dicted by a combination of parameters of the acoustic environ-
ment. Specifically, we hypothesize that HA users proactively
use their HAs more if they are faced with loud acoustic
environments (SPL) but poor signals (SNR). In addition, as
previous studies have shown [32], we also hypothesize that the
diversity of the sound environment (i.e. SPLvar and SNRvar)
impacts usage times in a way that more diverse listening
situations predicts higher usage.

C. Model approach

To test the significance of predicting variables we take a
linear mixed models (LMMs) approach. LMMs have proven
highly effective when dealing with complex, longitudinal data
with multilevel clusters in which observations might be corre-
lated. In LMMs, inter-observational correlations are dealt with
by including random effects besides the independent predictive
variables (here, acoustic characteristics), which are treated as
fixed effects with regression coefficients [33].

Briefly, LMMs are an extension of simple linear models
to allow for both fixed and random effects. Fixed effects
are contributed to variables that exhibit constant slopes and
intercepts with the response variable regardless of any hi-
erarchical grouping - that is, fixed effects are considered
within-participants effects. On the other hand, random effects
allow the slope and/or intercept to vary between grouping
factors (such as age or gender). For example, we might
expect that HA usage within a day vary between participants
due to unmeasurable factors, which would suggest including
participant IDs as a random factor for the intercept (i.e. a
between-participant effect). Moreover, we might believe that
the strength of the association between SPL and HA usage
vary between the participants, which in turn would suggest
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Fig. 3. Mean HA usage (left), sound pressure levels (middle), and signal-to-noise ratio (right). Each colored line represents data from each participant, and
the black line represents the grand-average across all participants and days. Shaded area represents the 95% CI. Since only few logs were made at times
between midnight and 7am these data-points were omitted.

modeling the fixed effect of SPL on HA usage with a random
slope.

Using LMMs, we can model the dependent variable (in our
case HA usage), y, on the following form:

y = Xβ + Zγ + ε, (1)

were y is a N × 1 column vector of N observations; X is
a N × p matrix of the p predictor variables (see first column
in Tables II and III); β is a p× 1 column vector of the fixed
effects regression coefficients (see second column in Tables II
and III); Z is the N×q design matrix for the q random effects;
γ is a q×1 vector of random effects; and ε is the N×1 column
vector of the residuals, i.e. the part of y not explained by our
model. In our case study, we model the within-participant HA
usage in minutes/hour with SPL, SNR, SPLvar, and SNRvar

as fixed effects. In addition, we include random intercepts
for each participant and hour, and random slopes for each
of the fixed effects. We model HA usage in hours/day with
the same fixed effects (now aggregated across all hours of
a day) and allow random intercepts for each participant and
day, and random slopes for each of the fixed effects. Modeling
were done in the statistical programming language, R, using
the lme4 package [34].

D. Workflow implementation

The BDA Workflow (i.e. DAW) for this case study can be
summarized with the following sub-flows, each consisting of
several tasks:

Data selection: Relevant data are selected from the BDA
platform data-repository and aggregated according to the needs
of the hypotheses being tested (i.e. Data Processing Tasks).
Here, two levels of aggregation are needed (as previously
stated) and the selected data includes SPL, SNR, the time-
stamps of each data-log, and any relevant grouping factor (i.e.
participant ID, age).

Model selection: The predictor variables of the selected
data are included as fixed effects and model selection identifies
the most parsimonious parameterization of the random effects

using LMMs (i.e. Statistical Analysis Tasks). Each combi-
nation of random effects (i.e. random intercepts and slopes)
are compared wrt. Akaike’s Information Criteria (AIC, see
Table I). The model with the lowest AIC is chosen for further
evaluation.

Model evaluation: The quality of the model fit is evalu-
ated by inspecting the residuals and the predictive power of the
final model is evaluated by the amount of explained variance.
In addition, main effects of the regression coefficients for each
predicting variable (here, acoustic parameters) are tested for
significance by a MANOVA using Wald’s chi-square tests (see
Table II and III).

E. Results

Model selection (see section V-D) identified the optimal
(most parsimonious) models by comparing each parameteriza-
tion of the random effects with a NULL hypothesis that does
not allow random variation in neither slopes nor intercepts.

Table I shows the AIC for each combination of random
effects. Columns 1-3 display the results for models predicting
HA usage between hours and column 4-6 show results for

TABLE I
COMPUTED AIC FOR EACH MODEL. THE MODELS aM0 AND bM0

CORRESPONDS TO THE NULL MODELS - THAT IS, THE LEAST COMPLEX
MODELS THAT ONLY INCLUDE FIXED EFFECTS.

minutes/hour hours/day
Model df AIC Model df AIC
aM0 6 601.44 bM0 6 1067.22
aM1 7 584.01 bM1 7 1019.15
aM2 7 581.19 bM2 7 1069.22
aM3 8 554.88 bM3 8 1021.15
aM4 10 557.63 bM4 10 1024.74
aM5 10 558.85 bM5 10 1021.72
aM6 10 558.27 bM6 10 1024.28
aM7 10 558.63 bM7 10 1020.07
aM8 12 561.76 bM8 12 1023.24
aM9 12 562.40 bM9 12 1022.91
aM10 12 559.99 bM10 12 1024.50
aM11 12 561.00 bM11 12 1025.41



models predicting HA usage between days. The lowest AIC
is obtained by the models aM3 and bM1. In both cases, adding
random effects vastly improved the model prediction (AIC
approx. 50 lower than for NULL models aM0 and bM0). For
predicting HA usage between hours, the best combination of
random effects were to allow for random intercepts due to
participant and hour of day. With this partitioning, 13.6% of
the total variance between observations were explained purely
by the fixed effects, and including the random effects increased
the proportion of explained variance to 76.4%. For predicting
HA usage between days, the proportion of explained variance
were 6.5% (fixed effects) and 36.8% (full model), respectively,
and the optimal model only included a random intercept due
to participant. Figure 3 shows the mean HA usage, SPL,
and SNR over time (from 7am to midnight). Each colored
line corresponds to data from each participant, and the black
line represents the grand-average across days and participants
with the 95% CI indicated by the gray shaded area. Usage is
fairly stable at around 40 minutes/hour from noon to midnight.
However, both the SPL and SNR exhibit fluctuations over time:
SPL peaks at noon and both SPL and SNR peaks in the early
evening (6pm to 7pm). These grand average fluctuations are
likely to indicate routine activities taking place at roughly the
same time every day (such as lunch and dinner activities).

Table II presents the estimated regression coefficients of
the optimal model for predicting HA usage within a day. The
significant predictors were SNR and SNRvar. Thus, hours of
low and highly varying SNR exhibit less HA usage (increases
in SNR and SNRvar with 1 SD yields 2.04 and 2.8 minutes of
less use per hour, respectively).

In Figure 4 we plot the distribution of total HA usage per
day (left) together with scatter-plots of two possible predictive
variables; SPL and SPLvar (middle and rightmost panel). In

TABLE II
REGRESSION COEFFICIENTS AND SIGNIFICANCE FOR PREDICTING HA

USAGE WITHIN A DAY FOR EACH (SCALED AND CENTERED) PREDICTOR.

Dependent variable:
HA usage (minutes/hour)

SPL −1.373
(0.999)

SNR −2.037∗

(1.194)

SPLvar 0.158
(0.789)

SNRvar −2.389∗∗

(1.027)

Constant 38.031∗∗∗

(3.086)

Observations 86
Log Likelihood -296.265

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

only a small proportion of days were the HA barely used,
and the overall mean were 10.05 hours/day. The regression
slopes of HA usage with SPL seems fairly equal among the
participants (color-coded solid lines in Figure 4 middle) al-
though the intercepts seem to vary by visual inspection (which
were also confirmed by the model selection). In contrast, the
association between HA usage and SPLvar (see Figure 4 right)
indicates both varying slopes and intercepts. However, adding
a random slope for SPLvar to model bM1 did not lower the
AIC. The regression coefficients (Table III) indicate significant
and positive effects of SPL and SPLvar to daily HA usage.
Thus, days with overall higher SPL and a more diverse sound
environment are associated with increased HA usage. We did
not find that including days as a random effect improved the
AIC (bM3 in Table III), which indicates that the participants
did not generally increase their daily HA usage during the
days of the study.

VI. DISCUSSION

We have introduced a Big Data analytics (BDA) architec-
ture for processing large amount of static and dynamic data
concerning patients with hearing loss and their use of hearing
aids. The BDA platform enables rapid analytics of data by
implementing executable workflows that specifies the relevant
mathematical and algorithmic operations to be performed.

Using a linear mixed-models approach, we have identified
distinct patterns of hearing aid (HA) usage in five patients with
hearing loss. On a daily basis, hours with less-than-normal
HA usage is associated with a higher-than-normal signal-to-
noise ratio and variance in the signal-to-noise ratio (SNRvar)
of the sound environment. One speculative explanation is that
moments of high SNRvar, which could be brought on by

TABLE III
REGRESSION COEFFICIENTS AND SIGNIFICANCE FOR PREDICTING HA

USAGE BETWEEN DAYS FOR EACH (SCALED AND CENTERED) PREDICTOR.

Dependent variable:
HA usage (hours/day)

SPL 0.624∗∗∗

(0.240)

SNR 0.086
(0.359)

SPLvar 0.825∗∗∗

(0.256)

SNRvar −0.325
(0.365)

Constant 9.976∗∗∗

(0.955)

Observations 198
Log Likelihood -497.703

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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changes in the contextual situation of a HA user (such as
moving from a busy meeting to a quiet office), comprise
fewer listening situations than moments of constant SNR. In
addition, periods with an overall lower SNR might demand
more HA use, which effectively increase the perceived SNR.
On a monthly basis, days with more-than-normal HA usage
is associated with higher-than-normal sound pressure levels
(SPL) and more diverse sound environments. The diversity
of the sound environment (here approximated by SPLvar)
can be considered a proxy for life-style activity levels [35].
Thus, an overall louder and more active day seems to be
associated with increased HA usage. This finding corroborates
earlier studies, showing that when using the HAs more often,
and reporting greater satisfaction, older adults indicated more
diverse listening situations [32].

Our findings are based on recordings of HA usage and
acoustic parameters in only five participants over the course
of approximately 40 days. However, data in EVOTION will
comprise recordings from more than one thousand partici-
pants with diverse demography and clinical backgrounds, and
recordings of HA use will be acquired for up to one year.
By projecting the presented modeling approach to EVOTION
data via the BDA platform, we expect to generalize outcomes
to the general population of people with hearing loss, and to
identify predictors of HA usage that are specific to specific
sub-populations according to either demographics or clinical
conditions (such as educational level or severity of hearing
loss). This will enable evidence-informed public-health policy
making within the hearing healthcare sectors. For example,
from the current results, a stakeholder could argue that the
provision scheme of HAs should not only be guided by age
and/or hearing loss but also by the acoustical environment a
potential HA user faces.

Lastly, in a review study, Perez and Edmon [36] found that
the level of reporting in studies investigating HA usage was
inconsistent and of variable quality. Here, and in EVOTION,
we overcome these problems by relying on actual data-logs
instead of self-reported or accumulated HA usage statistics.

VII. CONCLUSIONS

In this work we have presented one of the first so far
experimental application of analytics implemented over a Big
Data platform and designed to process health data related to
hearing impaired patients. The work is part of the ongoing EU
project EVOTION aimed at supporting public-health policy
makers with Big Data technology.

The work demonstrates the possibilities that a data-driven
approach to healthcare could provide by considering a re-
stricted set of user data (N = 5). Our findings are aligned with
earlier studies and confirm the suitability of a linear mixed-
models approach.

The same approach is currently being adopted over the
much larger clinical trial (N > 1000) of the EVOTION
project, where we expect to achieve results representative of
the whole population of hearing impaired people.
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