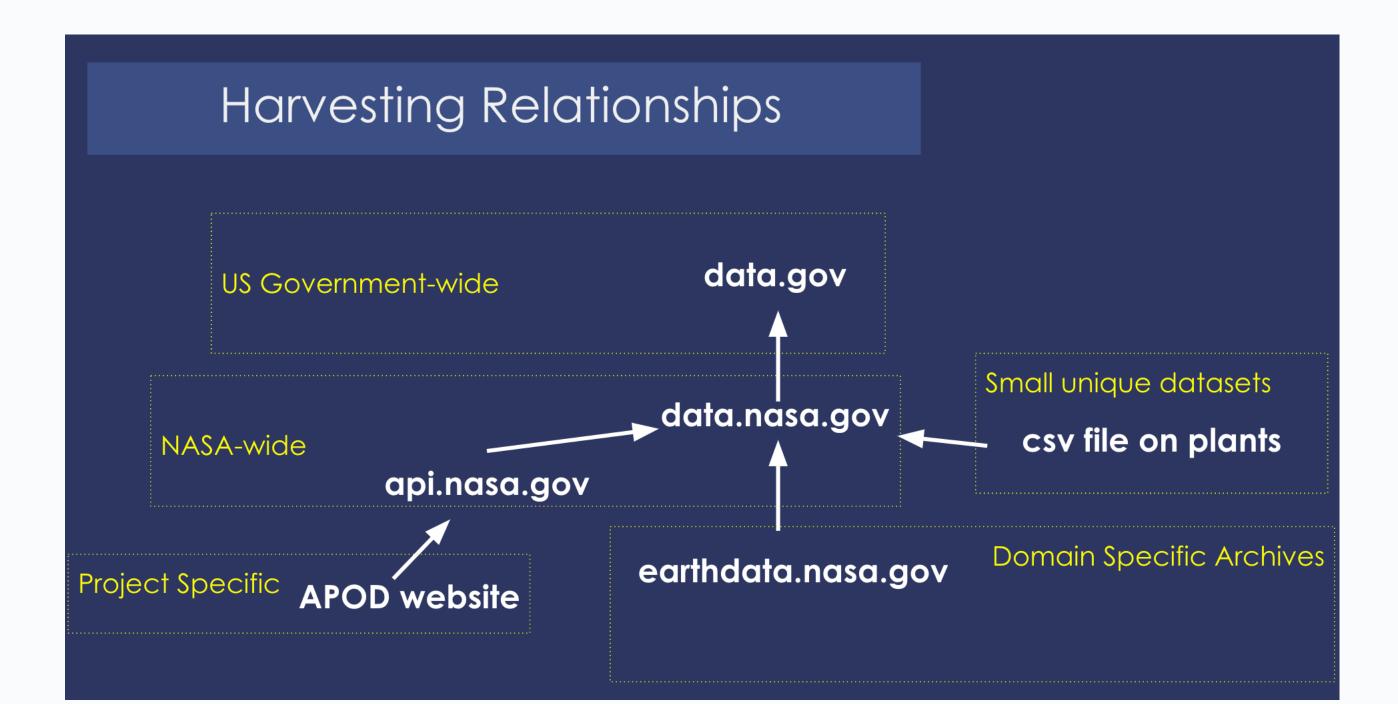


Reusing Data and **Metadata** to Create New Metadata **through Machine-learning** & Other Programmatic Methods


ADVANCING EARTH AND SPACE SCIENCE

INTRODUCTION

OUR CONTEXT

We describe two projects focused on improving discoverability at DATA.NASA.GOV & CODE.NASA.GOV via reuse of metadata.

These sites release aggregations of NASA's data & code to the public. They mostly hold metadata, not the actual datasets and code. They harvest metadata from other NASA sites and in turn supply it to government-wide data sites like code.gov & data.gov.

These projects were a collaboration between NASA's OCIO (Office of Chief Information Officer)'s open-innovation program (code.nasa.gov, data.nasa.gov, api.nasa.gov, open.nasa.gov) and OCIO's data analytics team that develops prototypes.

Future State We're Working Towards:

- 1. Improved discoverability through ML-assisted tagging.
- 2. Reusable code. Example: ML model in project 2 was reused.
- Deploy keyword model as public API (so other agencies can use)
- 4. Encourage NASA & public to build their own user interfaces & visualizations by exposing metadata in a JSON. Examples from the code.nasa.gov JSON:

Interactive notebook exploring different aspects of NASA's open-source code projects in aggregate

https://observablehq.c om/collection/@justin gosses/nasa-metadata

Select a	t measure of en	gagememt to sort &	? filter o	n:			
(faulua							
forks	\						
		107					
This slid	er selects the minin	num number of forks, a	project hc	s to hav	e to be shown i	n the table or	first histog
name "openmct"		owner "nasa"			stargazers "7612"	"273"	"704"
"sunpy		"sunpy"	"968"			"45"	"328"
	-3D-Resources"		"15"		"1582"	"220"	"234"
	WindJava"	"NASAWorldWind"			"324"	"82"	"192"
	orldWind"	"NASAWorldWind"			"397"	"58"	"185"
"visionworkbench"		"visionworkbench"			"342"	"38"	"221"
	lata-search"	"nasa"	"9"	"136"	"463"	"58"	"147"
	eConnect"	"nasa"	"95"	"111"	"215"	"47"	"123"
"trick"		"nasa"	"637"	"110"	"387"	"64"	"122"
4							
sp 3							
lecor							
of Recor							
Number of Records							

JUSTIN GOSSES¹, ANTHONY R. BUONOMO¹, BRIAN A. THOMAS¹, EVAN TAYLOR YATES¹, RENA W. YUAN^{1,2}, JENNA M. HORN¹ ¹NASA Office of the Chief Information Officer, ²U.S. Dept. Agriculture. CONTACT: Justin.C.Gosses@nasa.gov or Brian.a.Thomas@nasa.gov

TWO PROJECTS

PROJECT 1: PROGRAMMATICALLY CREATE METADATA OF FILE TYPE & DATASET ATTRIBUTES FROM DATA FILES

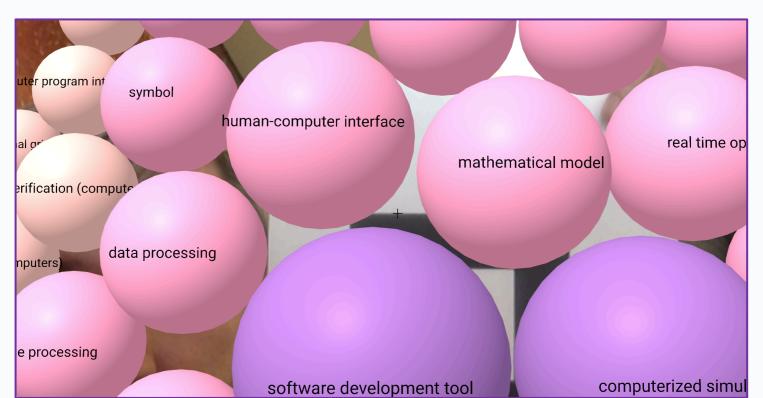
DATA: Tens of thousands of datasets described on DATA.NASA.GOV.

METHODS: Leverage the download link field on data.nasa.gov, webscraping, and some python tools to generate metadata that describe files. **RESULTS: FAILURE-** REUSE NOT POSSIBLE DUE TO METADATA LIMITATIONS

DISCUSSION: Goal was to generate metadata like file type (CSV, PNG, TIFF), file size, and attributes (# of instances, rows & columns; strings vs. numbers, etc.) This data would be used by end-users to filter results and theoretically inform a model for predicting what datasets work well for different tasks. Howerver, link listed in "download link field" rarely led directly to a file. Large variance in required navigation across 88 sites that feed into data.nasa.gov made it impossible to get files via web-scraping.

LESSONS LEARNED: FOR THIS IDEA TO WORK, "DOWNLOAD LINK" METADATA FIELD NEEDS TO BE A DIRECT LINK TO FILE(S) OR SOMETHING THAT CAN BE PROGRAMMATICLY USED TO GENRATE LINK TO FILES, NOT TO A WEB PAGE WHICH REQUIRES ADDITIONAL HUMAN NAVIGATION.

PROJECT 2: USE A MACHINE-LEARNING MODEL TO CREATE KEYWORD TAGS FROM CODE PROJECT DESCRIPTION TEXT


DATA: 500+ open-source code projects on <u>CODE.NASA.GOV</u>.

METHODS: Used paragraph length project descriptions as input into machine-learning model that predicts keywords. Model described below. **RESULTS: SUCCESS-** IMPROVED DISCOVERABILITY VIA BETTER & MORE TA

DISCUSSION: Performance was good enough to automate keyword predictions into every new code project on CODE.NASA.GOV. Mistakes tend to be around short description (<20 words) or repeated words with unusual meaning, ie *WorldWind* software, which has nothing to do with wind.

LESSONS LEARNED: A MODEL TRAINED ON PAPER ABSTRACTS GENRALIZED WELL TO PREDICTING KEYWORD TAGS FOR CODE PROJECT DESCRIPTIONS. ONE METADATA REUSED TO CREATE ANOTHER.

Web-based Augmented Reality User-Interface. "in progress"

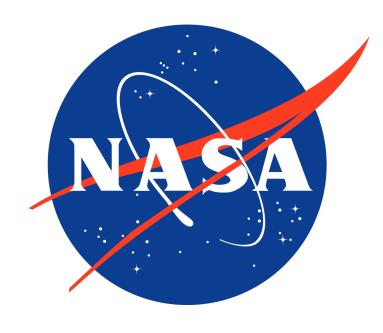
The STI Tagger (Our ML model)

The STI tagger can automatically assign NASA keywords to text. The system's models were trained upon about 3 million manually tagged NASA documents, and it can automatically tag from a selection of about 7,000 keywords. Training data comes from STI.NASA.GOV

DATA.NASA.GOV

CODE.NASA.GOV

Try it out! Nebsite includes A.I.-Generated metadata



LEARN ABOUT OUR NATURAL LANGUAGE PROCESSING MODEL

https://go.usa.gov/xpmdw

per

Nur

CONCLUSIONS

ML CREATED METADATA HAS BOTH BENEFITS & COSTS

ML GENERATED KEYWORDS CAN AUGMENT HUMAN **KEYWORDS IMPROVING DATASET DISCOVERABILITY**

GENERATING NEW METADATA FROM THE DATA FILES THEMSELVES IS DIFFICULT TO IMPOSSIBLE WHEN SITE **ARCHITECTURES ASSUME HUMAN NAVIGATION TO DOWNLOAD DATA FILES**

DISCUSSION

PROJECT 2: ML-GENERATED KEYWORD DISCUSSION

HUMAN- VS. ML-GENERATED KEYWORDS

YWORD TAGS		MACHINE- GENERATED					
w often tags ded?	Once, on dataset load	More than once, model updates for example.					
gs reflect whose rspective?	Dataset supplier	Training data + filtered to match user needs					
g meaning iformity?	Different people use different words for same thing	Standardized tag list. Optional hierarchal relationships.					
mber of tags?	Commonly 0-8. Sparse tags are a problem.	More than a human. Limit to top X number of tags by predicted accuracy.					

KEY BENEFITS OF ML GENERATED KEYWORDS

Results in more keywords of better average quality than dataset owner supplied keywords

Possible to add into DevOps pipeline that automates new additions without human admin work.

KEY COSTS OF ML GENERATED KEYWORDS

Requires additional machine-learning skillset that may not always be present

DevOps: automating new API calls and tests requires additional type of maintenance work

Additional server cost and security requirements

False tags occur a bit more often which places a new burden on end-user