Dataset Open Access

Replication package of "Search-based Crash Reproduction using Behavioral Model Seeding"

Pouria Derakhshanfar; Xavier Devroey; Gilles Perrouin; Andy Zaidman; Arie van Deursen


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">https://arxiv.org/abs/1912.04606</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">https://github.com/STAMP-project/Botsing-model-seeding-application</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">seed learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">crash reproduction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">search-based software testing</subfield>
  </datafield>
  <controlfield tag="005">20200426103839.0</controlfield>
  <controlfield tag="001">3673916</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="0">(orcid)0000-0002-0831-7606</subfield>
    <subfield code="a">Xavier Devroey</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Namur</subfield>
    <subfield code="0">(orcid)0000-0002-8431-0377</subfield>
    <subfield code="a">Gilles Perrouin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="0">(orcid)0000-0003-2413-3935</subfield>
    <subfield code="a">Andy Zaidman</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="0">(orcid)0000-0003-4850-3312</subfield>
    <subfield code="a">Arie van Deursen</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="0">(orcid)0000-0002-7395-3588</subfield>
    <subfield code="4">res</subfield>
    <subfield code="a">Annibale Panichella</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2105679861</subfield>
    <subfield code="z">md5:08639dc0a1063855a7aed4eb18c1faf9</subfield>
    <subfield code="u">https://zenodo.org/record/3673916/files/Botsing-model-seeding-application-master.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-10-18</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:3673916</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Delft University of Technology</subfield>
    <subfield code="0">(orcid)0000-0003-3549-9019</subfield>
    <subfield code="a">Pouria Derakhshanfar</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Replication package of "Search-based Crash Reproduction using Behavioral Model Seeding"</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">731529</subfield>
    <subfield code="a">Software Testing AMPlification</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Search-based crash reproduction approaches assist developers during debugging by generating a test case which reproduces a crash given its stack trace. One of the fundamental steps of this approach is creating objects needed to trigger the crash. One way to overcome this limitation is seeding: using information about the application during the search process. With seeding, the existing usages of classes can be used in the&lt;br&gt;
search process to produce realistic sequences of method calls which create the required objects. In this study, we introduce behavioral model seeding: a new seeding method which learns class usages from both&lt;br&gt;
the system under test and existing test cases. Learned usages are then synthesized in a behavioral model (state machine). Then, this model serves to guide the evolutionary process. To assess behavioral model-seeding, we evaluate it against test-seeding (the state-of-the-art technique for seeding realistic objects) and no-seeding (without seeding any class usage). For this evaluation, we use a benchmark of 122 hard-to-reproduce crashes stemming from six open-source projects. Our results indicate that behavioral model-seeding outperforms both test seeding and no-seeding by a minimum of 6% without any notable negative impact on efficiency.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3673915</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3673916</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
183
4
views
downloads
All versions This version
Views 183183
Downloads 44
Data volume 8.4 GB8.4 GB
Unique views 157157
Unique downloads 33

Share

Cite as