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Abstract— The accurate assessment of upper limb motion
impairment induced by stroke - which represents one of the
primary causes of disability world-wide - is the first step to
successfully monitor and guide patients’ recovery. As of today,
the majority of the procedures relies on clinical scales, which
are mostly based on ordinal scaling, operator-dependent, and
subject to floor and ceiling effects. In this work, we intend
to overcome these limitations by proposing a novel approach
to analytically evaluate the level of pathological movement
coupling, based on the quantification of movement complexity.
To this goal, we consider the variations of functional Principal
Components applied to the reconstruction of joint angle tra-
jectories of the upper limb during daily living task execution,
and compared these variations between two conditions, i.e. the
affected and non-affected arm. A Dissimilarity Index, which
codifies the severity of the upper limb motor impairment
with respect to the movement complexity of the non-affected
arm, is then proposed. This methodology was validated as a
proof of concept upon a set of four chronic stroke subjects
with mild to moderate arm and hand impairments. As a first
step, we evaluated whether the derived outcomes differentiate
between the two conditions upon the whole data-set. Secondly,
we exploited this concept to discern between different subjects
and impairment levels. Results show that: i) differences in
terms of movement variability between the affected and non-
affected upper limb are detectable and ii) different impairment
profiles can be characterized for single subjects using the
proposed approach. Although provisional, these results are very
promising and suggest this approach as a basis ingredient
for the definition of a novel, operator-independent, sensitive,
intuitive and widely applicable scale for the evaluation of upper
limb motion impairment.

I. INTRODUCTION

Human upper limb movements require an extraordinary
coordination of numerous degrees of freedom (DoFs). Based
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on neuroscientific literature, this coordination is supposed
to be organized according to covariation patterns – the so
called synergistic control, which allow a successful interaction
with the environment [?], [?], [?], [?]. After stroke, these
upper limb movements can be affected by different types of
sensorimotor impairments, such as weakness or loss of inter-
joint coordination resulting in deficits ranging from paralysis,
abnormal movement patterns or pathological synergies (e.g.
coupling of shoulder abduction and elbow flexion) to a certain
degree of inter-joint coordination [?], [?]. In consequence,
stroke subjects with arm impairments can show a reduced
adaptability to task demands [?], inefficient movement trajec-
tories [?], higher energy and force-consumption [?] (when for
example trying to perform goal-directed reaching movements),
and the increased risk of frustration in case of unsuccessful
movement attempts [?], [?]. Hence, these impairments lead to
long-term disabilities contributing in making stroke one of the
main causes of disability world-wide, with a tremendous socio-
economic impact [?]. Being able to evaluate stroke-specific
upper limb movement patterns with sufficient detail is critical
to properly monitor upper limb impairments after stroke, the
recovery thereof and determining the effectiveness of different
treatment approaches [?]. There exist multiple different
standard clinical upper limb assessments in stroke research,
among which the Fugl-Meyer Assessment of the Upper
Extremity (FMA-UE) [?] is widely used to describe voluntary
movement control [?]. This is assessed in a hierarchical
structure; from within to out-of synergistic movements and
from proximal to distal upper extremity segments. Despite the
satisfactory measurement properties [?], [?], most of these
clinical assessments exhibit floor and ceiling effects [?] and
heavily rely on subjective observer scoring on broad ordinal
scales (such as: 0=not, 1=partially, 2=fully possible).

Novel technologies for kinematic signal detection and
processing provide the opportunity for an objective and
accurate motion analysis, which allow to overcome the
limitations of standard clinical assessments in stroke research
and rehabilitation [?]. Among the different approaches, it is
worth mentioning (i) device-based assessments [?], [?] and (ii)
less interfering wearable systems for bio-signal and motion
capture processing [?], [?]. However, although promising, the
state-of-the-art solutions need to face with important issues,
such as operator and patient safety and costs of the procedure
(i). Bio-signal measurements, especially kinematic recordings
(ii), can offer a reliable way for motion evaluation during a set
of natural movements. In particular, the wearable sensor-based
approach has shown to be applicable to a variety of movement
tasks and expendable to daily-living tasks [?], which increases



Fig. 1. Overview of the experimental setup for the intransitive task (left)
and transitive and tool-mediated task (right).

the relevance of the assessment compared to the more abstract
and stringent nature of movements performed during standard
clinical assessments. Though some characteristics such as
longer movement times and higher trunk displacement were
described in stroke subjects [?], an exhaustive mathematical
characterization on the level of loss of inter-joint coordination
or pathological synergies after stroke still lacks in literature
[?]. The most common way to quantify synergies is through
Principal Component Analysis (PCA), a statistical method
that allows the identification of dominant variation patterns in
the data [?], [?]. Using this approach in a single-case study,
fewer combinations of joint motions were identified in one
stroke subject [?] as well as stronger synergistic coupling
between shoulder, elbow and wrist motions in contrast to
a healthy subject [?]. In [?], the authors applied a PCA on
a larger dataset of stroke subjects (n=46) to investigate the
components of linear relations between the upper limb joints
and the trunk at the end of reaching movements. However,
a common drawback of applying PCA is the underlying
hypothesis of temporal uncorrelation of upper limb poses
in time [?]. Consequently, the dynamic aspects of upper
limb motion including the temporal evolution of upper limb
joint trajectories are neglected. To overcome this issue, in
[?] the authors proposed functional Principal Component
Analysis (fPCA) as a technique to investigate the dominant
modes of time-dependent variation upper limb movements
on a comprehensive set of upper limb daily-living activities
in healthy subjects. The main advantage of this analysis
is that, while classical PCA-based analysis consider single
kinematic postures, with fPCA all the temporal evolution
of the movement is considered (thus intrinsically including
the dynamic aspects). Results showed that a reduced number
of functional Principal Components (fPCs) can be used to
describe and accurately reconstruct the complexity of upper
limb activities in healthy subjects, at joint level. The authors
also pointed to the possibilities of an automatic recognition of
physiological and pathological movements in stroke research
and rehabilitation by analyzing fPCs variations between the
affected and non affected upper limb [?].

In the present study we investigate whether the outcomes
discussed in [?] can be effectively exploited to characterize
upper limb motor impairment in chronic stroke subjects. For
that purpose, four chronic stroke subjects with moderate arm
and hand impairments performed the same 30 tasks of daily

Fig. 2. Kinematic model used in this work. Three rigid links are connected
by seven joints. Picture adapted from [?].

living activities [?] with both arms (affected and non-affected)
and a functional PCA analysis was applied. Based on this data
set, we evaluated whether the set of fPCs and the associated
approximation error in reconstructing joint trajectories are
appropriate outcome measures to differentiate i) between the
affected and the non-affected arm across stroke subjects and
ii) between different levels of upper limb impairments of the
single subjects.

II. EXPERIMENTAL PROTOCOL AND SETUP

A. Set of daily living tasks

In [?], the authors discussed a large set of tasks (i.e.,
30 different actions), which were selected to excite the
whole upper limb work-space [?], [?], [?] and to span all
the major hand configurations, e.g. referring to the most
common hand grasping taxonomies [?], [?]. Leveraging on
this, we employed here the same protocol, with the twofold
goal to: i) provide a comparison between different groups of
populations, including chronic stroke subjects in this case,
and ii) contribute to building up a large experimental data set
of upper limb motion (acquired using different acquisition
modalities), to enable comparison and benchmarking in future
works. Under this regard, the possibility to publicly share
collected data is envisioned and already under evaluation.
The task-set is divided in three sub-groups of ten actions
each: intransitive, transitive and tool-mediated tasks. Actions
included in the first group are gestures with no contact with
the external environment (i.e., requiring movement of the
proximal part of the upper limb), while the second group
contains actions that involve interaction with an object. The
third group implies tasks in which one external object is used
to act on the environment. A detailed description of the task-
set can be found in [?], [?]. In contrast to standard clinical
scales that mostly consist of abstract movement executions
and postures, the execution of a set of daily living tasks
increases the meaningfulness of arm and hand movements,
and thereby the ecological validity of measurements.

B. Experimental setup for data acquisition

The data were recorded with a full-body worn IMU-based
system sensor suit (Xsens technologies B.V., Enschede, The
Netherlands). The system consists of 17 inertial measurement
units (IMUs) placed symmetrically on predefined body
positions and fixed with Velcro straps and a size-fitting T-Shirt.
The IMUs provide 3D angular velocity using rate gyroscopes,
3D acceleration using accelerometers, 3D earth magnetic field



Fig. 3. Legend: FMA-UE, Fugl-Meyer Assessment of the Upper Extremity; IQR, Interquartile Range; Max., Maximal; MCA, Middle Cerebral Artery; *,
Subscale of the FMA-UE.

using magnetometers, as well as atmospheric pressure using
the barometer in an operating frequency 2405-1475 MHz [?].

A calibration procedure was required to evaluate sensors
drifts and internal parameters. This was achieved using
information related to subjects’ body dimensions and through
data fusion. The calibrated model was then used to reconstruct
the whole body kinematic description. In particular, 23 links
(or segments) connected through 22 spherical joints are used
to model the human body. Several relevant motion-related
quantities are then calculated and provided as output with a
recording frequency of 60 Hz, such as segments and joint
position, velocities, and accelerations (see Fig. 2). More
details can be found in [?]. Once the system is calibrated, the
experimental procedure established the repetition of each task
of the protocol three times. All measurements were performed
in upright sitting position on a chair. Subjects were instructed
to perform each movement task at comfortable speed, first
using the non-affected and then the affected upper limb.
Task actions including grasping and manipulating objects
(e.g. transitive and tool-mediated task group, see [?], [?] for
more details) were performed in front of an height-adjustable
table (at forearm height in 90 elbow flexion and neutral
shoulder position) with the targets placed at about 90 percent
of the arm length (shoulder joint-axis until line of proximal
interphalangeal joints).

C. Study information

In this work, we use data recorded from a subset of
four chronic stroke subjects, which are part of the obser-
vational study ”Assessing pathological synergies of upper
limb function and the relationship to visuospatial function
after stroke”. All subjects gave written consent in accordance
with the current version of the Declaration of Helsinki and the
Swiss regulatory authority requirements. The protocol was
approved by the Cantonal Ethics Committee Northwest and
Central Switzerland (BASEC-ID: 2016-02075) and registered

on ClinicalTrials.gov (Identifier: NCT03135093). Subject-
specific characteristics are reported in Fig. 3.

III. DATA ANALYSIS

A. Modeling and Pre-processing
We decided to use the XZY Euler parametrization to

represent the data. In this way, we obtained nine angles in
total to describe upper limb kinematics, three for the shoulder,
three for the elbow and three for the wrist. Additional details
on angles identification are provided in [?]. Without any loss
of generality and to allow future comparisons, we chose to
represent data with a 7 DoF model coherent with [?]. For
these reasons, we considered only one DoF out of the three
provided for the elbow (i.e. flexion-extension), three DoFs
for the shoulder, and three DoFs for the wrist (of which
one is related to forearm pronation-supination) (See Fig. 2).
Recorded data were manually segmented, meaning that for
every data stream, we selected initial and final frames of
each task repetition. Then, we linearly warped in time all the
segments through a re-sampling procedure with respect to a
fixed number of time frames (T = 300). This was made to
enable time-comparison of different movements and allow a
proper implementation of functional analysis (see [?]).

B. Evaluation-index of motion complexity
After the pre-processing phase, for each task, we got

the temporal evolution of each joint normalized in time.
To quantify the complexity of these movements under a
functional point of view, a possible strategy is to evaluate how
many basis functions are required to reconstruct the specific
joint trajectories. Functional Principal Component Analysis
(fPCA) represents a classic approach to identify the main
modulating functions of one data set, and to order these in a
descending order related to the explained variance. fPCA is a
functional extension of Principal Component Analysis (PCA),
typically used in several research fields to analyze multi-
dimensional time series [?]. More recently, this technique has



Algorithm 1 General procedure to calculate Reconstruction
Error Plots and Dissimilarity Index (ID)

1: procedure FUNCTIONALPCA
2: Resample Signals to T time frames;
3: Calculate f PCs (ref. [?]);

end
4: procedure GETRECONSTRUCTIONERROR
5: Load Dataset;
6: N ← NumElements(Dataset);
7: f PCs ← FunctionalPCA(Dataset);
8: M ← MaxNumfPCs( f PCs);
9: k← 0;

10: while k ≤M do . For each fPC
11: while i≤ N do . For each element in Dataset
12: Load Dataset(i);
13: Approx(i)← Approximate Dataset(i) using

the first k fPCs 1;
14: error(k, i)← rms(Dataset(i)−Approx(i));
15: i = i+1;

end
16: k = k+1;

end
17: GlobalError← rms(error) . rms per columns

end
18: procedure CALCULATE DISSIMILARITY INDEX (ID)
19: Load Dataset1;
20: Load Dataset2;
21: MeanError1 ← GetReconstructionError(Dataset1);
22: MeanError2 ← GetReconstructionError(Dataset2);
23: ID ← norm(MeanError1−MeanError2);

end

been profitably applied in [?] to identify the main functions
that modulate human movements.

In the following, we will briefly describe the main idea
behind fPCA and how it has been applied for motion
description. Let us assume, without any loss of generality, a 7
DoF kinematic model to represent upper limb joint trajectories
q(t) : R→R7 where t ∈ [0,1] is the normalized time. In these
terms, generic upper limb motion q(t) can be decomposed
in terms of the weighted sum of base elements Si(t), or
functional synergies

q(t)' q̄(t)+S0(t)+
smax

∑
i=1

αi ◦Si(t) , (1)

where αi ∈ Rk is a vector of weights, Si(t) ∈ Rn - in our
case n equals to 7 - is the ith basis element or synergy and
smax is the number of basis elements. The operator ◦ is the
element-wise product (Hadamard product). and q̄ ∈R7 is the
average posture of q

q̄ =
∫ 1

0
q(τ)dτ , (2)

while S0 : R→ R7 is the average trajectory, also called zero-
order synergy. The output of fPCA is a basis of functions
{S1, . . . ,Ssmax} that maximizes the explained variance of the
movements in the collected dataset. Given a dataset with N
elements, the first fPC S1(t) is the function that solves the

following problem

max
S1

N

∑
j=1

(∫
S1(t)q j(t)dt

)2

subject to ||S1(t)||22 =
∫ 1

0
S2

1(t)dt = 1 .

(3)

Subsequent fPCs Si(t) are the functions that solve the
following:

max
Si

N

∑
j=1

(∫
Si(t)q j(t)dt

)2

subject to ||Si(t)||22 = 1∫ 1

0
Si(t)Sp(t)dt = 0 , ∀p ∈ {1, . . . , i−1} .

(4)
A detailed implementation of this method - which bypasses

the solution of the minimization problem - is discussed in
[?]. In this paper we used smax = 15.

It has been proved that the higher is the number of fPCs
used to reconstruct a signal, the lower is the error obtained for
reconstructing the real data. This observation implies that also
the complexity of a sample could be quantified in terms of the
number of functional components needed to provide reliable
reconstruction. Indeed, given an arbitrary reconstruction error
threshold, the higher is the variability of a time series, the
higher is the number of fPCs required to approximate the
signal with an error lower than the threshold.

In this paper, we propose to exploit these characteristics
to quantify the differences, in terms of functional complexity,
between two different physical conditions, i.e. non-affected vs.
affected upper limb movements. The main hypothesis is that
an affected motion, due to the loss of inter-joint coordination
or - in other words - increased joint coupling, leads to more
simple and less variable joint contributions than the normal
condition [?], when analyzed on the same task-set of upper
limb activities. In our analysis, this should be reflected in the
fact that, given a specific number of fPCs used to reconstruct
a signal, the reconstruction error will be lower in case of
pathological movements. Given di as the ith element of the
dataset, and given the first k synergies, the approximation
error is evaluated as

ek(i) = min
α j,i

[rms(qi(t)− q̂k
i (t,α j,i))], (5)

where q̂k
i (t,α j,i) is the approximation of qi(t) using the first

k synergies, calculated as

q̂k
i (t) = q̄(t)+S0(t)+

k

∑
j=1

α j,i ◦S j(t) , (6)

and α j,i are the optimal weights associated to the element di.
Representative error values for each k are then calculate as
the average ēk = mean([ek(1), . . . ,ek(N)]) and collected in a
vector E = [ē1, . . . , ēsmax ].

A schematics of this idea is depicted in Fig. 4, where the
red plot refers to affected motion, while the green plot refers
to the non-affected motion. The blue area within the two



Fig. 4. Typical profiles of reconstruction error w.r.t. the number of fPCs
enrolled. Red and green lines are the expected shapes in case of affected
and healthy motion, respectively. The area between the two curves can be
intended an an index of dissimilarity between the two conditions.

profiles can be regarded as an index of dissimilarity between
the two conditions. The dissimilarity index (ID) can be easily
calculated as:

ID =
smax

∑
i=1

EH(i)−
smax

∑
j=1

ES(i) =
smax

∑
i=1

(EH(i)−ES(i)), (7)

where EH is the vector of reconstruction error for the healthy
case, ES is the vector of reconstruction error for the stroke
case.

The procedure to obtain the plots theorized in Fig. 4
and to calculate ID is reported in Alg 1. Please note that
under a theoretical point of view, this methodology could
be generalized to the analysis of different types of motion
datasets with multiple subjects, and applied to intra-subject
analysis.

IV. RESULTS AND DISCUSSIONS

To verify whether our main hypothesis holds true, we
calculated the dissimilarity index (ID) defined in the previous
section between the whole data-set of non-affected arm
motions and the whole data-set of affected arm motions.
Results are depicted in Fig. 5 for all the stroke subjects.
It is possible to observe that the reconstruction error is
lower for the affected upper limb, as per research hypothesis
discussed in the previous section. The blue area can be used
as a gross difference index between the affected and non-
affected conditions for all stroke subjects in the whole data
sample (ID = 14.703). This result supports our assumption that
analysis of movement variability can be used to effectively
distinguish between non-affected and affected conditions due
to stroke.

To further characterize the proposed ID as index of the
impairment level, we performed the same analyses on a single-
subject-level. In order to evaluate whether our approach is
able to differentiate between subjects and their individual
impairment severity, we repeated our procedure to each
single-subject’s data-set. Results, reported in Fig. 6, illustrate
differences in terms of movement variability between the
affected and non-affected side of each subject. While our
main hypothesis of lower reconstruction errors in the affected
arm holds true for S1, S2 and S3 (ID ranging from 12.12 to

Fig. 5. Root Mean Square of reconstruction error vs. number of fPCs used.
All subject are considered for this analysis. ID = 14.703

27.31), higher reconstruction errors are visible in the affected
arm of S4 when compared to the non-affected side leading
to a negative ID equal to -6.91. We believe that, this higher
variability in the affected arm is related to extra-movements,
which S4 performed to compensate for the diminished grasp
function (FMA-UE hand score: 4 out of 14) when performing
the transitive and tool-mediated task actions. To verify this
hypothesis, we performed the same approach for the subset
of intransitive task actions, where finger and hand functions
are not crucial for the task accomplishment, for all the
considered subjects. Almost equal variability profiles between
the affected and non-affected arm and a ID of 1.27 were found
in S4, supporting the idea of approximately normal movement
behavior as long as no hand or finger function is needed,
whereas the movement variability seems to be comparably
diminished in S1 (ID of 11.65), S2 (ID of 24.33) and S3 (ID
of 12.60). Illustrations of these analyses are omitted for sake
of space.

V. IMPLICATIONS AND CONCLUSIONS

In this proof-of-principle work, we demonstrated how
stroke subjects’ level of impairment may be assessed through
the quantification of upper limb movement variability, in terms
of the resulting root mean square of reconstruction error using
a fPCs based description. The ID calculated upon the whole
dataset revealed differences in terms of motion variability
between the two upper limb conditions. In this manner,
novel measurement outcomes are provided to describe stroke-
related upper limb movement impairments, such as the loss of
inter-joint coordination, commonly associated with reduced
variability of motion elements, when performing a compre-
hensive set of daily living activities. This opens fascinating
perspectives toward the usage of this methodology as a tool
for assessing motor impairment after a stroke, herein defined
as reduced movement variability, in a quantitative, sensitive
and operator-independent fashion. Although only preliminary,
results seems confirming our hypothesis of generally lower
profiles of reconstruction errors in the affected compared
to the non-affected upper limb (as shown in Fig. 5 by
comparing both conditions for the whole set of four subjects
as shown in Fig. 6). The single-subject analysis revealed a
ID ranging from 27.31 in S2 to -6.91 in S4, that can partially
be explained by clinical assessment outcomes as shown in



Fig. 6. Root Mean Square of reconstruction error vs. number of fPCs used. Each sub-plot reports the analysis subject-specific. From top-left to bottom-right
results for Subjects from 1 to 4 are considered. Correspondent ID is reported in figure headings.

Fig.3. Studies on a larger data set are needed to confirm these
preliminary findings, also including other motor impairments,
such as ataxia, which would likely influence the results
and interpretation of the presented outcomes. These findings
suggest the usefulness of fPCA to study the motion variability
and provide implications for sensitive outcomes of post-stroke
upper limb impairment, which may be effectively used as
suitable biomarkers to discriminate between pathological and
physiological movement behaviour in stroke research and
rehabilitation [?]. In [?] the authors similarly found correct
predictions of the presence or absence of basic limb synergies
(defined by FMA-UE ≥ 34 and FMA-UE < 34) for 38 of 46
patients (82.6%) using PCA on endpoint reaching kinematics.
Here, we extend the PCA to the whole time set of motion data
using shape analysis described in functions, which enables
the investigation of dynamic aspects of movement behavior,
including the spatio-temporal evolution of joint trajectories to
precisely describe pathological joint coupling or pathological
synergies due to stroke. However, we acknowledge that,
in contrast to the classical PCA performed at one point
in time, direct coupling between joints are not explicitly
considered with our approach. As another limitation, we

acknowledge that limiting the application of the approach to
the upper limb except for the hand and fingers could lead to
erroneous assessment and interpretation of the results. For this
reason, model extensions to hand and finger motions will be
considered to additionally include relevant kinetic information
for grasping activities. Finally, our future works will also
take into account possible deficits in the non-affected arm.
Considering previous works on physiological movement data-
sets [?], here, we could broaden the analysis to pathological
movement data from mildly to moderately affected stroke
subjects, when performing a set of daily living tasks. In a
next step, differences between specific single task-items will
be investigated using the same methodology. Finally, this
methodology could be further exploited for an automatic
recognition of physiological and pathological movements
through machine learning and in terms of online evaluations
of improvements related to rehabilitation procedures.
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