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a b s t r a c t 

Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT). However, re- 

sistance typically develops in about 1 year – a clinical condition termed metastatic castrate-resistant 

prostate cancer (mCRPC). We develop and investigate a spatial game (agent based continuous space) of 

mCRPC that considers three distinct cancer cell types: (1) those dependent on exogenous testosterone 

( T + ), (2) those with increased CYP17A expression that produce testosterone and provide it to the envi- 

ronment as a public good ( T P ), and (3) those independent of testosterone ( T −). The interactions within 

and between cancer cell types can be represented by a 3 × 3 matrix. Based on the known biology of 

this cancer there are 22 potential matrices that give roughly three major outcomes depending upon the 

absence (good prognosis), near absence or high frequency (poor prognosis) of T − cells at the evolution- 

arily stable strategy (ESS). When just two cell types coexist the spatial game faithfully reproduces the 

ESS of the corresponding matrix game. With three cell types divergences occur, in some cases just two 

strategies coexist in the spatial game even as a non-spatial matrix game supports all three. Discrepancies 

between the spatial game and non-spatial ESS happen because different cell types become more or less 

clumped in the spatial game – leading to non-random assortative interactions between cell types. Three 

key spatial scales influence the distribution and abundance of cell types in the spatial game: i. Increasing 

the radius at which cells interact with each other can lead to higher clumping of each type, ii. Increasing 

the radius at which cells experience limits to population growth can cause densely packed tumor clusters 

in space, iii. Increasing the dispersal radius of daughter cells promotes increased mixing of cell types. To 

our knowledge the effects of these spatial scales on eco-evolutionary dynamics have not been explored in 

cancer models. The fact that cancer interactions are spatially explicit and that our spatial game of mCRPC 

provides in general different outcomes than the non-spatial game might suggest that non-spatial models 

are insufficient for capturing key elements of tumorigenesis. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In cancer biology, tumors are viewed as complex ecosystems

consisting of cancer cells, normal cells, blood vasculature, inter-

cellular spaces, and various nutrients such as oxygen and glucose

( Gatenby et al., 2014; Merlo et al., 2006; Orlando et al., 2012 ).

Within this ecosystem, cancer cells, often of distinct types, com-
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ete for space and nutrients, and engage in direct interactions.

ancer cells both contribute towards and are affected by their

eighborhoods (known as microenvironments) within which they

onsume available resources, survive and proliferate ( Egeblad et al.,

010 ). Within these neighborhoods there are eco-evolutionary

eedbacks where limiting resources influence the total abundance

f cancer cells and interactions between tumor cells influence the

requency of cell types. While often modeled non-spatially, several

eatures of tumors invite spatially-explicit models. For instance,

iopsies, histological samples and MRI imaging all provide spatial

http://dx.doi.org/10.1016/j.jtbi.2017.08.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
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nformation on tumor characteristics ( Sottoriva et al., 2013; Wa-

law et al., 2015 ). Pathologists often measure and score spatial

istributions of cancer cell types, vasculature, immune cells, and

ther tumor properties ( Patel et al., 2014; Zhang et al., 2014 ). Fi-

ally, increasingly cancer biologists recognize the ubiquity of spa-

ial heterogeneity within tumors ( Bedard et al., 2013; Swanton,

012 ). This heterogeneity likely has significance for tumor progres-

ion, metastases and patient outcome ( Marusyk et al., 2012 ). 

Mathematical models of cancer have been employed to under-

tand tumor initiation, progression and metastases ( Altrock et al.,

015 ). Such models can be used to fit existing data, evaluate

ey factors relevant to cancer progression, or provide qualitative

nd quantitative predictions that can be experimentally validated

 Altrock and Traulsen, 2009; Werner et al., 2011 ). Non-spatial mod-

ls of cancer can be deterministic or stochastic. They can take the

orm of ordinary differential equations that track the dynamics of

he cancer cells (often seen as growing logistically or according to

 Gompertz equation ( Kozusko and Bajzer, 2003 )) and perhaps that

f normal cells and/or immune cells. Spatially explicit models may

ake the form of diffusion processes framed as partial differential

quations models ( Tomasetti et al., 2013 ), or the models may be

gent based ( Macklin and Edgerton, 2010 ). As agent based models,

he cancer cells or other features of the tumor may be represented

n vertices of a lattice or network. Or, individual cells may occupy

 space on a spatial grid described as squares or hexagons ( Perfahl

t al., 2011; Thalhauser et al., 2010 ). Finally, agent based models

an consider continuous space where the cancer cells are repre-

ented by continuously varying spatial coordinates in one, two or

hree dimensions ( Gallaher and Anderson, 2013 ). 

Mathematical models can consider the eco-evolutionary dy-

amics that occur in tumors. Here we define a cancer cell “type”

s cells that share the same heritable phenotype relevant to the

ancer under study. Ecological dynamics represent changes in the

opulation size or density of cancer cells. The evolutionary dynam-

cs consider how the heritable traits of cancer cell lineages change

ith time, or how the frequencies of different cancer cell types

hange with time. When a cancer cell’s survival or proliferation

robabilities are influenced by its type and the types of other can-

er cells, the dynamics are frequency-dependent and therefore can

e described using game theory. Evolutionary game theory (EGT)

rovides an excellent modeling tool for considering complex tu-

ors that include several interacting cancer cell types. 

EGT deals with interactions between players ( Beerenwinkel

t al., 2015; Tomlinson, 1997 ). As a game, cancer cells represent

he players, their types or heritable phenotypes represent the dif-

erent strategies, and survival and proliferation rates represent the

ayoffs. A cell’s payoff will be influenced by its strategy and the 

trategies of others. EGT includes tools for modeling population

ynamics and the evolutionary dynamics of changes in the fre-

uency of different cancer cell types. EGT can be used to find eco-

volutionary equilibria and to evaluate their stability. When there

re a finite number of different possible strategies among the can-

er cells, then the evolutionary dynamics can be modeled using

eplicator dynamics (RD) ( Hofbauer and Sigmund, 1998 ). RD are

on-spatial and apply when an individual interacts with the pop-

lation at large either via random interactions or through “playing

he (entire) field”. Recent research has focused on extending RD

nto spatially explicit scenarios ( Nowak, 2006; Ohtsuki et al., 2006;

yttendaele and Thuijsman, 2015 ). Both the evolutionary dynamics

nd subsequent equilibria may change when space is made explicit

 Hauert and Doebeli, 2004; Kerr et al., 2002; Ohtsuki and Nowak,

006; Számadó et al., 2008; Uyttendaele et al., 2012 ). 

Recently, cancer has been modeled using replicator dynamics.

hese models have either been non-spatial ( Basanta et al., 2012;

ingli et al., 2009; Mateo et al., 2014 ) or spatially defined as oc-

urring on a fixed lattice of a graph ( Basanta et al., 2008 ). Here
e use a spatially-explicit agent based approach to model can-

er as an evolutionary game. First, we describe metastatic castrate-

esistant prostate cancer that provides the motivation for our mod-

ling work. The biology of this cancer suggests three important

ancer cell types (strategies) whose interactions and payoffs can

e described with a 3 × 3 matrix game. We can analyze this ma-

rix game as a non-spatial model using RD, and we develop a spa-

ial version of the prostate cancer model where the space is con-

inuous. Second, we find the evolutionarily stable strategies (ESS)

or the non-spatial game and the stable equilibria that arise in the

patial variant of the model. Finally, using the spatial model, we

xplore three relevant processes and scale dependencies that must

ccur in actual tumors. To our knowledge these processes and their

nteractions have not been collectively explored in cancer models. 

The first of these processes relates to the density-dependence

adius. A given tumor cell will be negatively affected by the den-

ity of other cancer cells within some neighborhood that repre-

ents the local depletion of resources or buildup of toxins. The sec-

nd process relates to the frequency-dependence radius, that de-

cribes the distance at which cancer cells play the game. Up to

hat distance does the strategy of neighbors matter in terms of in-

uencing the payoff to an individual tumor cell? The third process

elates to the dispersal radius. Cancer cells exhibit motility and

he resulting movement of cells determines the distance between

wo daughter cells. Prior models have not made the distinction be-

ween the three scale dependent processes of density-dependence,

requency-dependence, and dispersal radius. By considering con-

inuous space, our model lends itself to examining the effects

f these three scale-dependent processes on the eco-evolutionary

quilibrium and on the dispersion of cancer cells and strategies

n space. In what follows we introduce the metastatic castrate-

esistant prostate cancer models used in this paper ( Section 2 );

e compare the eco-evolutionary outcomes of the non-spatial and

patial models ( Section 3 ); we examine the effects of varying the

hree scale-dependent processes on spatial equilibria ( Sections 4 );

nd we discuss our results and highlight some directions for future

esearch ( Section 5 ). 

. Models: Replicator dynamics and its spatial variant 

.1. Background: Metastatic castrate-resistant prostate cancer 

Prostate cancer most commonly metastasizes to the bone and

everal to a dozen or more secondary tumors can arise across

ones of a single patient ( Basanta et al., 2012; Fizazi et al.,

013 ). Despite no longer residing within the primary tumor of

he prostate (in fact for many of these patients the prostate may

ave been removed), these cancer cells still retain androgen re-

eptors and rely on testosterone produced by normal cells of the

atient and distributed through the blood ( Hamilton et al., 2016 ).

e shall refer to this cancer cell type as having strategy T + . To

arget these cancer cells’ need for testosterone, androgen depri-

ation therapy (ADT) stops normal production of testosterone in

he patient – a treatment termed “chemical castration” ( Hussain

t al., 2013; Lu-Yao et al., 2008; Tsai et al., 2013 ). Virtually all pa-

ients initially respond to ADT. But, metastatic prostate cancer re-

ains an almost uniformly fatal disease because the cancer cells

re able to evolve resistance. In ADT, resistance typically results in

 few months or years and the disease progresses to metastatic

astrate-resistant prostate cancer (mCRPC). Resistance to ADT typi-

ally occurs through two different strategies. One of these involves

he upregulation of CYP17A whereby the cancer cell produces its

wn testosterone ( Cai et al., 2011; Mostaghel et al., 2011 ). These

e shall refer to as T P cells. They retain androgen receptors. The

 

P cells have the side effect of providing testosterone to their ex-

ernal environment where it becomes available to T + cells. Finally,
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Table 1 

The fitness matrix for T + , T P and T −cell populations. The diag- 

onal values have been set to 0. 

T + T P T −

T + 0 a b 

T P c 0 d 

T − e f 0 
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Table 2 

Division of the 22 cases for replicator dynamics (3) into 3 

groups according to the ESS frequencies of T − cells. No T − cells 

(group I) indicate a highly treatable tumor, a low frequency of 

T − cells indicates a moderately treatable tumor (group II), while 

a high frequency of T − cells (group III) indicates an untreatable 

tumor (non-responders). 

# ( a, b, c, d, e, f ) ESS Group 

1 (0.6,0.3,0.5,0.4,0.2,0.1) ( 6 
11 

, 5 
11 

, 0 ) I (positive) 

2 (0.6,0.2,0.5,0.3,0.4,0.1) ( 6 
11 

, 5 
11 

, 0 ) 

3 (0.6,0.2,0.5,0.4,0.3,0.1) ( 6 
11 

, 5 
11 

, 0 ) 

4 (0.5,0.3,0.6,0.4,0.2,0.1) ( 5 
11 

, 6 
11 

, 0 ) 

5 (0.5,0.2,0.6,0.3,0.4,0.1) ( 5 
11 

, 6 
11 

, 0 ) 

6 (0.5,0.2,0.6,0.4,0.3,0.1) ( 5 
11 

, 6 
11 

, 0 ) 

7 (0.4,0.3,0.6,0.5,0.2,0.1) ( 2 
5 
, 3 

5 
, 0 ) 

9 (0.4,0.2,0.6,0.5,0.3,0.1) ( 2 
5 
, 3 

5 
, 0 ) 

11 (0.3,0.2,0.6,0.5,0.4,0.1) ( 1 
3 
, 2 

3 
, 0 ) 

14 (0.6,0.1,0.5,0.4,0.3,0.2) ( 6 
11 

, 5 
11 

, 0 ) 

17 (0.5,0.1,0.6,0.4,0.3,0.2) ( 5 
11 

, 6 
11 

, 0 ) 

20 (0.4,0.1,0.6,0.5,0.3,0.2) ( 2 
5 
, 3 

5 
, 0 ) 

8 (0.4,0.2,0.6,0.3,0.5,0.1) ( 11 
30 

, 17 
30 

, 2 
30 

) II (neutral) 

10 (0.3,0.2,0.6,0.4,0.5,0.1) ( 10 
35 

, 22 
35 

, 3 
35 

) 

12 (0.6,0.1,0.5,0.3,0.4,0.2) ( 14 
31 

, 13 
31 

, 4 
31 

) 

15 (0.5,0.1,0.6,0.3,0.4,0.2) ( 11 
27 

, 14 
27 

, 2 
27 

) 

13 (0.6,0.1,0.5,0.2,0.4,0.3) ( 1 
3 
, 1 

3 
, 1 

3 
) III (negative) 

16 (0.5,0.1,0.6,0.2,0.4,0.3) ( 7 
25 

, 10 
25 

, 8 
25 

) 

18 (0.4,0.1,0.6,0.3,0.5,0.2) ( 1 
4 
, 2 

4 
, 1 

4 
) 

19 (0.4,0.1,0.6,0.2,0.5,0.3) ( 5 
30 

, 11 
30 

, 14 
30 

) 

21 (0.3,0.1,0.6,0.4,0.5,0.2) ( 2 
12 

, 7 
12 

, 3 
12 

) 

22 (0.3,0.1,0.6,0.5,0.4,0.2) ( 7 
35 

, 22 
35 

, 6 
35 

) 

Table 3 

Six scenarios corresponding to six mortality regimes. 

Mortality regime 

Scenario Cell death Dead cells staying in field 

1 Stochastic (probability 5%) Short (5 generations) 

2 Deterministic (20 generations) Permanently 

3 Stochastic (probability 5%) Permanently 

4 Deterministic (20 generations) Long (30 generations) 

5 Deterministic (20 generations) Short (5 generations) 

6 Stochastic (probability 5%) Long (30 generations) 
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resistance to androgen deprivation can take the form of cancer

cells becoming wholly independent of testosterone: T −. Treatment

of mCRPC depends on the dominant resistance strategy. When

T P cells are that largest intratumoral population, abiraterone, a

CYP17A inhibitor, is typically effective. However, even in patients

who respond to abiraterone, the disease progresses usually within

1 − 2 years. 

Here we investigate the eco-evolutionary dynamics of mCRPC

by modeling the composition and dispersion patterns of the three

cell types ( T + , T P and T −) within a tumor. The resulting eco-

evolutionary equilibria become important in that a tumor with pri-

marily T + and T P cells can be effectively treated with drugs such

as abiraterone that target androgen receptors ( Ryan et al., 2013 ).

However, tumors with high frequencies of T −cells will be unre-

sponsive to abiraterone and require chemotherapy. 

2.2. Model basics 

Let T = { T + , T P , T −} be the set of cell types from Section 2.1 . Let

x i , i ∈ T , denote the frequency of the cells of type i ∈ T in the pop-

ulation. We assume that the cancer cells interact with each other

as a game. When a focal cell of type i ∈ T interacts with a cell of

type j ∈ T , the outcome is the probability that the focal cell divides

and creates an offspring of type i . These division probabilities for

interaction between all types form a payoff (fitness) matrix A de-

picted in Table 1 . Please consult Appendix A for details about the

non-spatial model corresponding to this payoff matrix. 

2.3. Replicator dynamics in metastatic castrate-resistant prostate 

cancer 

For each type i ∈ T , the replicator dynamics ( Hofbauer and Sig-

mund, 1998 ) define the time change ˙ x i of its cell frequency x i : 

˙ x i = x i (e i A x � − x A x � ) , i ∈ T (1)

where x = (x T + , x T P , x T − ) , and e i is the i th row of a 3 × 3 identity

matrix. Even with the same initial conditions ( x (0) = x 0 ), the fre-

quency dynamics (1) will vary with the payoff matrix A . For the 22

cases, we can map the frequency trajectories and the evolutionary

stable strategies (ESSs) on a simplex ( Fig. 1 ). When starting from

positive initial frequencies, i.e., x (0) = ( 1 / 3 , 1 / 3 , 1 / 3 ) , each case of

our model results in a single ESS, which is the attractor for the dy-

namics given by (1) . In the notation of Bomze (1983) , the games

we consider fall into the following two groups: (i) “no fixed point

in the interior simplex” and “no edge pointwise fixed”; and (ii)

they will exhibit “one fixed point in interior simplex” and “three

non-corner fixed points on edges”. 

Based on the frequency of the T −cells at the ESS, we can divide

the 22 cases for replicator dynamics into three different groups

( Table 2 ): 

I. (positive) The ESS frequency of T − cells is 0 – such tumors

should respond strongly to abiraterone 

II. (neutral) The ESS frequency of T − cells is between 0 and 0.15 –

such tumors may respond to abiraterone 

II. (negative) The ESS frequency of T − cells is greater than 0.15 –
such tumors may correspond to non-responders I
.4. Spatial replicator dynamics in metastatic castrate-resistant 

rostate cancer 

In this section, we model the density and frequency dynam-

cs of the prostate cancer cells as a spatial game on a continu-

us space. We imagine the cancer cells as players on a torus � =
0 , 50) × [0 , 50) with periodic boundary conditions. Rather than

aving a fixed grid or lattice, cells can exist at any point on this

urface. Initially, there are 99 cancer cells (33 of each type), scat-

ered randomly within the central zone C = [20 , 30] × [20 , 30] of

he flat torus �. 

For the spatial game we specify rules regarding cell death,

ensity-dependent interactions, frequency-dependent interactions

nd cell proliferation, which occur in generations. During a gen-

ration all living cells are selected in a random order to undergo

he following actions: 

ell death. We imagine that cell death can be either stochastic

r deterministic. A cancer cell dies with either a fixed probabil-

ty (stochastic) or after a fixed number of generations (determinis-

ic). If the focal cell dies, it does not undergo any further actions.

ollowing death, the cell either stays in the field permanently or

s removed after a pre-specified number of generations. The com-

inations of deterministic or stochastic cell death and the rate at

hich dead cells stay in the field (5 generations, 30 generations, or

ermanently) generate six possible mortality regimes (see Table 3 ).

f the focal cell remains alive, it undergoes the next action. 
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Fig. 1. The trajectories of cell type frequencies for each matrix from Table 2 , ordered by group. The vertices of the simplex correspond to a frequency of 1 for the corre- 

sponding cell type. The red dots represent the ESS’s and the black dots represent the saddle points. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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t  
ensity-dependent cell interactions. We imagine that available

pace and resources are necessary for successful cell prolifera-

ion. We define the density-dependence neighborhood as a disc

round the focal cell with a pre-specified radius, called the density-

ependence radius ( Fig. 2 a). If the number of cells (itself and dead

ells included) within this density-dependence neighborhood is

reater than or equal to 10 cells per unit area, then the focal cell

annot proliferate and it does not move onto additional actions in

d  
he current generation. If the density of cells within the density-

ependence neighborhood is less than 10 cells per unit area then

he focal cell moves onto the next action. 

requency-dependent cell interactions. We imagine the cells also

ave a frequency-dependence neighborhood , which is a disc around

he focal cell with a pre-specified radius, called the frequency-

ependence radius ( Fig. 2 b). The focal cell randomly selects a neigh-
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Fig. 2. A focal cell and its three neighborhoods. (a) Density-dependence neighborhood. A focal cell might proliferate if the density of cells within the disc defined by the 

density-dependence radius is below a threshold. (b) Frequency-dependence neighborhood. The focal cell’s likelihood of proliferating will be determined from an interaction 

between it and a randomly selected cell from within the disc defined by the frequency-dependence radius. (c) Dispersal neighborhood. If a focal cell proliferates, its daughter 

cell is placed randomly within the disc defined by the dispersal radius. 
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bor cell from the living cells occurring within this frequency-

dependence neighborhood. Having selected the focal cell’s “oppo-

nent” for the game we move to the last action. 

Cell proliferation. The probability of the focal cell undergoing cell

division and producing a daughter cell is determined by the pay-

off from the matrix A if we let the type of the focal cell be the

row strategy and the type of the opponent be the column strategy

( Table 1 ). If the focal cell reproduces, it generates a daughter cell

of its own type. This daughter cell is not placed in the field imme-

diately, but only after all living cells have completed their actions

for the current generation. A given daughter cell is placed at a ran-

dom location in the focal cell’s dispersal neighborhood ( Fig. 2 c). The

dispersal neighborhood is a disc around the focal cell with pre-

specified radius, called the dispersal radius . 

3. Tumor growth and composition 

In this section we simulate tumor growth under the six differ-

ent mortality regimes ( Table 3 ). We compare the tumor composi-

tion of the six scenarios with the ESS of the non-spatial models for

the 22 payoff matrices. In the simulations we track changes in 

1. the total number of cancer cells (population dynamics) 

2. the frequencies of cell types (frequency dynamics) 

3. the dispersion pattern of each cell type 

Each simulation begins with 99 cells (33 per cell type), placed

randomly in the central 10 × 10 zone of the flat torus � = [0 , 50) ×
[0 , 50) . We ran simulations for 20 0 0 generations. For each combi-

nation of the mortality regime ( Table 3 ) and payoff matrix we re-

peated the simulation five times. This resulted in 660 simulations.

For these simulations, we set the density-dependence, frequency-

dependence, and dispersal radii to one. The density threshold for

reproduction was set to 10 cells per unit area within the focal cell’s

density-dependence neighborhood. To evaluate the spatial dynam-

ics and for comparisons to the ESS of the non-spatial model, we

need stability concepts for spatial equilibria in terms of the densi-

ties and frequencies of the three cell types. Here, we will consider

a spatial equilibrium stable if the frequencies in each two consec-

utive generations have a difference less than 0.001 in the 50 past

generations, as stated formally in Definitions 3.1 and 3.2 : 

Definition 3.1 (Stable frequency in the spatial game) . Frequency x i 
of type i ∈ T is stable in generation τ if | x i (t + 1) − x i (t) | ≤ 0 . 001

for all generations t ∈ { τ − 49 , τ − 48 , . . . , τ } . 
Definition 3.2 (Stable spatial equilibrium) . A spatial equilibrium is

stable in generation τ if the frequencies of all three types ( T + , T P ,
T −) are stable in this generation. 
In the reminder of the paper, whenever we refer to “equilibria”,

hat we mean is “stable equilibria”, just to simplify the notation. 

We might be able to observe two different types of (stable)

quilibria: The transient (stable) equilibrium and saturated (stable)

quilibrium. The former might occur when the total number of tu-

or cells is still growing, while the latter occurs once the space

s saturated, i.e., once the total population of living cells as well

s populations per type in the tumor do not change (due to the

nite size of the field �). In order to quantify when such equi-

ibria occur, we define the transient and saturated equilibria in

efinitions 3.3 and 3.4 . 

efinition 3.3 (Transient stable spatial equilibrium) . A stable spa-

ial equilibrium in generation τ is called transient if the sum of

opulations of T + , T P , and T −cells keeps growing in generations

 τ − 49 , τ − 48 , . . . , τ } . 
In the following definition, we use the term maximal total pop-

lation , which refers to the largest total population of cells reached

ver the run of the simulation, including both dead and living cells

n this count. 

efinition 3.4 (Saturated stable spatial equilibrium) . A stable spa-

ial equilibrium in generation τ is called saturated if the total cell

opulation stays within 1% of its maximal population size in gen-

rations { τ − 49 , τ − 48 , . . . , τ } . 
.1. The effects of the mortality regime on tumor growth 

Whether death is stochastic or deterministic and how long dead

ells remain in the tumor strongly influence both the transient and

aturated spatial equilibria. Fig. 3 shows the spatial dynamics of

atrix #19 for each scenario from Table 3 . By generation 200 for

atrix #19, the frequencies of cell types have reached transient

quilibria in all scenarios even as the entire space has yet to be

lled ( Fig. 4 ). In scenario 1 (mortality regime: stochastic death and

emoval of dead cells after 5 generations) we observe that T + , T P ,
nd T −cells are rather well mixed with dead cells and the tumor

s tightly packed throughout. A similar tumor is observed in sce-

ario 5 (mortality regime: deterministic death after 20 generations

nd removal of dead cells after 5 generations) and scenario 6 (mor-

ality regime: 5% stochastic death and removal of dead cells after

0 generations), while more dead cells are observed in the field in

cenario 6 (with ≈ 60% cells dead) than in scenario 1 (with ≈ 20%

ells dead) and scenario 5 (with ≈ 22% cells dead). In scenario 2

mortality regime: deterministic death and no removal of dead

ells) we see the formation of a necrotic core of densely packed

ead cells. Scenario 3 (mortality regime: 5% stochastic death rate

nd no removal of dead cells) is similar to scenario 2, except that

 small number of living cells persist within the necrotic core. In

cenario 4 (mortality regime: deterministic death and removal of
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Fig. 3. Transient and saturated equilibria corresponding to the six different mortality regimes ( Table 3 ). This example uses payoff matrix #19. The generations depicting 

stable transient/saturated equilibria are marked in gray. Scenarios 2 and 3 have no stable saturated equilibria as all cells die when saturation is reached. Each panel shows 

the frequencies of the three cell types over the course of 20 0 0 generations. 

Fig. 4. Tumors in space at the point where cell type frequencies achieve a stable transient equilibria. Subfigures (a), (b), (c), (d), (e) and (f) correspond to scenarios 1, 2, 3, 

4, 5 and 6 in Table 3 , respectively, with payoff matrix #19. T + , T P , T − and dead cells are denoted by blue, red, green and black color, respectively. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 



84 L. You et al. / Journal of Theoretical Biology 435 (2017) 78–97 

Fig. 5. Tumors in space at the point where cell type frequencies achieve stable saturated equilibria. Subfigures (a), (b), (c), (d), (e) and (f) correspond to scenarios 1, 2, 3, 

4, 5 and 6 in Table 3 , respectively, with payoff matrix #19. T + , T P , T − and dead cells are denoted by blue, red, green and black color, respectively. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dead cells after 30 generations) the tumor becomes a ring with

an outer surface of living cells, an inner surface of dead cells and

bulges of living cells recolonizing an otherwise empty center. 

Fig. 5 illustrates the tumors at their saturated equilibria for the

six scenarios using payoff matrix #19. In scenarios 1 and 4 the liv-

ing cells of the three types are relatively well mixed. In scenario 1

the entire space is filled. Dead cells are mixed with the living ones

and the appearance is similar to the transient equilibrium. In sce-

nario 4 the ring shape of the tumor progresses to a more patchy

distribution of living and dead cells surrounding patches of empty

space. Scenarios 2 and 3 (no removal of dead cells) result in the

filling of the space with dead cells. 

Tables 5–7 (in Appendix C ) record the transient and saturated

equilibrium frequencies of the three cell types for all six scenarios

and for all 22 payoff matrices, respectively. 

Based on the six scenarios and the twenty-two possible ar-

rangements of payoff matrices, we observe the following: 

• In scenario 1 (mortality regime: 5% stochastic death rate and

removal of dead cells after 5 generations), the transient and sat-

urated equilibrium frequencies for matrices from group I (pos-

itive) are very close to the matrix game ESS, while their equi-

librium frequencies for matrices from group II (neutral) and III

(negative) deviate from the matrix game ESS. In conclusion,

when the ESS for the matrix game contains just two cell types

( T + and T P ), the spatial model yields cell type frequencies near

identical to this ESS. When the ESS of the matrix game contains

all three cell types, the spatial game results in equilibrium cell

type frequencies quite different than the non-spatial ESS. 
• In scenario 2 (mortality regime: deterministic death after 20

generations and no removal of dead cells), the transient equilib-

rium frequencies for matrices from group I (positive) are close

to the ESS while the transient equilibrium frequencies for ma-

trices from group II (neutral) and III (negative) deviate substan-

tially from the non-spatial ESS. For matrices in group II, T −cells

die out during the transient equilibrium, and the frequencies of

T + and T P cells converge on the 2-strategy non-spatial equilib-

rium if only T + and T P exist. For the matrices in group III, the

transient equilibrium frequency of T −is much lower, and the
frequencies of T + and T P cells are higher than the non-spatial

ESS. There is no stable saturated equilibrium as all cells die

when the space is filled no matter which matrix is examined.

This is due to the existence of the necrotic core, which keeps

spreading and eventually takes over the entire field. 
• In scenario 3 (mortality regime: 5% stochastic death rate and

no removal of dead cells), the equilibrium frequencies are quite

similar to those in scenario 2. The necrotic core eventually

takes over the space. While some living cells do survive for

many generations, they eventually fail to proliferate as they be-

come surrounded by dead cells. Eventually, all cells die. 
• In scenario 4 (mortality regime: deterministic death after 20

generations and removal of dead cells after 30 generations), the

transient equilibrium frequencies are quite similar to these in

scenarios 2 and 3. For matrices from group I (positive) the fre-

quencies of T + and T P cells are close to the ESS ( T − are ab-

sent from the ESS); for matrices from group II (neutral) T −cells

die off leaving a transient equilibrium with just T + and T P cells

close to their 2-strategy ESS. For matrices in group III, T −cells

persist but have much lower frequencies than predicted by the

ESS. For all matrices and mortality regimes the transient phase

sees a tumor that grows as an expanding ring. Living cells in-

habit the outer edge of the ring and dead cells the inner edge.

At the saturated equilibrium the thickness of the dead cells on

the ring influences the spatial dynamics and cell type frequen-

cies. A thinner ring of dead cells during the transient phase per-

mits live cells to recolonize the empty space inside the ring,

giving rise to a saturated equilibrium as shown in Fig. 5 d. A

thicker band of dead cells results in a tumor at saturation that

has large empty spaces and a relatively low number of living

cells. The frequencies of cell types at the saturated equilibria for

matrices from group I (positive) and matrices #8, #12 and #15

deviate substantially from the non-spatial ESS as clumps of liv-

ing cells become separated and patchy due to the large empty

spaces within the tumor. The saturated equilibrium frequencies

for the remaining matrices are close to a 2-strategy ESS, as ei-

ther T + or T −dies out; T P cells occur at higher frequencies than

expected by the ESS for all matrices in groups II and III. 
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• In scenario 5 (mortality regime: deterministic death after 20

generations and removal of dead cells after 5 generations), the

transient equilibrium frequencies as well as the saturated equi-

librium frequencies are very close to those generated from sce-

nario 1. 
• In scenario 6 (mortality regime: 5% stochastic death rate and

removal of dead cells after 30 generations), the transient and

saturated equilibrium frequencies for matrices from group I

(positive) are close to the ESS, while their equilibrium frequen-

cies for matrices from group II (neutral) and III (negative) devi-

ate from the ESS. 

The mortality regime is paramount in determining tumor archi-

ecture. With no removal of dead cells (scenarios 2 & 3), the space

ecomes filled with dead cells and the ultimate survival of the tu-

or would require unbounded space for living cancer cells to in-

ade. When dead cells take a long time to disappear, the tumor

xhibits rings of living cells surrounding necrotic regions, the tu-

or dies off (scenario 4), or dead cells represent over half of those

isible in the tumor (scenario 6). The arrangement of these empty

atches within the tumor becomes dynamic as some patches be-

ome colonized by living cells and new empty patches form. Re-

ardless, the overall abundance of live cancer cells is much re-

uced because of the empty spaces and the long persistence of

ead cells. If dead cells persist for only a short number of genera-

ions (scenario 1 & 5) the tumor grows and fills the entire space as

 contiguous population of living cells. The living cells both expand

long the margin of the tumor and continually repopulate the core

f the tumor as cells die and disappear. The saturated equilibria in

cenario 1 result in high and persistent populations of cancer cells;

hough the mosaic of cell types changes constantly at small spatial

cales. 

.2. Spatial vs. non-spatial dynamics 

To compare in more detail the dynamics and equilibria of the

patial versus non-spatial models, we consider the saturated equi-

ibria for the 22 payoff matrices under just the first scenario

stochastic mortality and short duration before removing dead

ells). This scenario produces a highly dynamic tumor that satu-

ates at dense populations of living cells. We focus on the three

mportant themes in tumorigenesis: 

1. the population size of live cancer cells at the saturated equilib-

rium 

2. the frequencies of cell types at the saturated equilibrium 

3. the dispersion patterns of cell types within the tumor 

To measure the dispersion pattern of a given cell type within

he saturated tumor, we use the variance-to-mean ratio ( Upton and

ook, 2014 ). The variance-to-mean ratio of type i ∈ T is defined as 

i = 

∑ N 
k =1 (n 

k 
i 
− n̄ i ) 

2 

(N − 1) ̄n i 

(2) 

here the space is evenly divided into N = 900 subsquares. Vary-

ng the number of subsquares a bit gives us qualitatively simi-

ar results, therefore we consider N = 900 as being representative.

uantity n k 
i 

is the number of type i cells in the k th subsquare

nd n̄ i is the average number of type i cells per subsquare. The

ariance-to-mean ratio provides a quantitative measure of spatial

ispersion or clumpiness (i.e., degree of aggregation of cells within

ertain regions of the field) ( Tilman and Kareiva, 1997 ): A variance-

o-mean ratio ρi = 1 indicates that cells of type i are randomly

ispersed in space, a ρ i > 1 indicates a clumped dispersion, and

 ρ i < 1 indicates an over-dispersed or more uniform dispersion in

pace. 
For the 22 payoff matrices at saturated equilibria, Table 4 de-

icts the living population size, cell type frequencies, the variance-

o-mean ratio for each cell type, and the ESSs for the non-spatial

odel. Results show the mean value for 5 runs. Standard devia-

ions were very low and so we omit them from the table. In all

uns, population sizes rose rapidly until the space was completely

lled, usually after about 500 generations. 

In terms of population size, there are only small differences be-

ween the 22 payoff matrices; though two subtle patterns are evi-

ent ( Table 4 ). Matrix 2 of group I had the highest mean of 17837

iving cells, and matrix 19 of group III had the lowest mean of

7427; a mere 2.3% difference. In the absence of any cell death,

50 0 0 represents an absolute maximum cell density because in

ur model no cell proliferation can occur when cell densities are

t or above 10 cells per unit area. 

We observe the following: 

• Tumors from group III (negative) reach slightly smaller popula-

tion sizes when the frequency of T −is greater than 0.1. There is

also a small and negative correlation between the clumping of

cell types (high variance-to-mean ratios) and their population

size. We conclude that a smaller population size results because

tumors with high T −frequencies exhibit a clumped dispersion.

This clumping of all cell types reduces proliferation rates from

like cell types interacting. 
• Population sizes are relatively large for matrices from group I

where only T + and T P coexist. These tumors have near ran-

dom dispersion patterns by cell type; thus eliminating non-

random, positive assortative interactions by cell type. Matrices

from group II (low frequency of T −) have population sizes close

to those of group I. In group II, only T −cells exhibit substantial

clumping; but they are too few to impact the tumor’s overall

population size. 

Many of the payoff matrices result in large differences between

he cell type frequencies in the spatial model as compared to the

on-spatial ESS ( Table 4 ) We highlight 2 results: 

• Spatial dynamics converge to the ESS for all of the matrices

in group I. With these matrices only T + and T P persist in both

replicator and spatial dynamics. 
• For matrices in groups II and III, the rarest cell type in the ESS

suffers and equilibrates at a lower frequency then predicted by

the ESS. For matrices in group II (neutral), T −does much worse

than at the ESS. Also, a highly clumped dispersion occurs for

T −cells for these matrices. For matrices #16, #19 and #21 of

group III, T + cells do much worse than predicted by the ESS. In

these cases, the T + cells have a highly clumped dispersion. 

Fig. 6 shows examples of different saturated equilibria with dif-

erent levels of clumping. For matrix #7 (group I), we see the spa-

ial population converging to the ESS with a random dispersion of

oth T + and T P cells ( Fig. 6 a). The tumors become quite well mixed

or all saturated equilibria from group I payoff matrices. For matri-

es #19 and #22, respectively, the cell type that does worst relative

o the ESS has the highest variance-to-mean ratio at the saturated

patial equilibria ( Figs. 6 b and c). This result holds for all matrices

n groups II (neutral) and III (negative). 

Whether cell clumping is observed or not depends on the par-

icular payoff matrix. No cell clumping happens for the matrices

n group I, in which ESSs have no T −cells. In the spatial model,

hen T −cells die out, T + and T P cells can only proliferate by inter-

cting with each other, because the diagonal of each payoff ma-

rix is 0. We conclude that the inter-cell type facilitation leads

o the two cell types becoming well mixed with each other. Cell

lumping (either T + or T −cell clumping) is observed for matrices
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Table 4 

Saturated equilibrium population sizes, ESSs, saturated equilibrium frequencies and variance-to-mean ratios for each of 

the 22 matrices. 

Saturated Saturated equilibrium Variance-to-mean 

equilibrium ESS frequencies ratio 

Group # population size ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) 

I (positive) 1 17746.4 (0.5455,0.4545,0) (0.5474,0.4526,0) (0.9559,1.0370,-) 

2 17837 (0.5455,0.4545,0) (0.5482,0.4518,0) (0.9867,1.0673,-) 

3 17772.4 (0.5455,0.4545,0) (0.5469,0.4531,0) (0.9709,0.9536,-) 

4 17754.6 (0.4545,0.5455,0) (0.4515,0.5449,0) (0.9615,0.9557,-) 

5 17763.4 (0.4545,0.5455,0) (0.4505,0.5495,0) (1.0550,0.9706,-) 

6 17773.2 (0.4545,0.5455,0) (0.4512,0.5488,0) (1.0489,0.9667,-) 

7 17778.8 (0.40 0 0,0.60 0 0,0) (0.3987,0.6013,0) (1.1149,0.9115,-) 

9 17718.4 (0.40 0 0,0.60 0 0,0) (0.3992,0.6008,0) (1.1116,0.9147,-) 

11 17809.2 (0.3333,0.6667,0) (0.3287,0.6713,0) (1.1676,0.8946,-) 

14 17788 (0.5455,0.4545,0) (0.5482,0.4518,0) (0.9586,1.0608,-) 

17 17790.4 (0.4545,0.5455,0) (0.4561,0.5439,0) (1.0111,0.9879,-) 

20 17817.6 (0.40 0 0,0.60 0 0,0) (0.3991,0.6009,0) (1.0572,0.8402,-) 

II (neutral) 8 17636.6 (0.3659,0.5659,0.0682) (0.3926,0.6069,0.0025) (1.1422,0.7932,7.8522) 

10 17779.2 (0.2856,0.6287,0.0857) (0.3280,0.6691,0.0029) (1.1337,0.8275,9.3954) 

12 17730 (0.4516,0.4149,0.1290) (0.5419,0.4532,0.0050) (1.0083,1.1209,8.6381) 

15 17747.4 (0.4074,0.5185,0.0741) (0.4494,0.5453,0.0053) (1.0836,0.9507,9.2382) 

III (negative) 13 17547.4 (0.3333,0.3333,0.3333) (0.3324,0.3368,0.3308) (2.0569,1.6380,2.2931) 

16 17596.6 (0.280 0,0.40 0 0,0.320 0) (0.2506,0.4123,0.3371) (2.9114,1.5339,2.5050) 

18 17524.8 (0.250 0,0.50 0 0,0.250 0) (0.2518,0.5151,0.2327) (2.5338,1.1878,3.0966) 

19 17427 (0.1667,0.3667,0.4667) (0.1342,0.3638,0.5021) (3.1905,1.3738,1.3250) 

21 17451 (0.1667,0.5834,0.2500) (0.1525,0.6020,0.2455) (3.4 840,0.9954,2.44 89) 

22 17484.4 (0.2016,0.6285,0.1699) (0.2218,0.6469,0.1313) (2.7141,0.7627,4.4589) 

Fig. 6. Snapshots of the field at saturated equilibria when (a) spatial dynamics converge to the ESS, (b) T + does worse in space than it does at the ESS, and (c) T − does 

worse in space than it does at the ESS. T + , T P , T − and dead cells are denoted by blue, red, green and black color, respectively. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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in groups II and III, for which ESSs have three types present. Inter-

estingly, across all matrices, T P always shows low levels of clump-

ing. Its dispersion is always near random, or for some matrices,

over-dispersed. In the first 10 generations, all cell types exhibit a

clumped dispersion, due to the small dispersal radius. However, T P 

cells always grow fast and spread rapidly across the field, because

T P cells enjoy an initially high average payoff when compared to

other types, i.e., 1 
3 (c + d) ≥ 1 

3 (a + b) ≥ 1 
3 (e + f ) or 1 

3 (c + d) ≥
1 
3 (e + f ) ≥ 1 

3 (a + b) . The spread of T P cells provides a higher

probability of interacting with the other two cell types. As a result,

T P cells keep growing and spreading. Eventually, T P cells become

randomly or over-dispersed throughout the tumor. 

4. Effects of the frequency-dependence radius, the dispersal 

radius and the density-dependence radius on spatial equilibria 

In this section we investigate the effects of independently vary-

ing the frequency-dependence, dispersal and density-dependence

radius on the eco-evolutionary dynamics of the spatial model.

The spatial game will be analyzed with matrices #7 (group I; no

T −cells in the ESS), #8 (group II; low frequency of T −cells in the

ESS), and #22 (group III; high frequency of T −cells in the ESS) as

these are typical representatives of their groups. 
.1. Effect of the frequency-dependence radius 

We compared the outcomes of the spatial game when the

requency-dependence radius was set to 0.5, 1, 10, and 50, while

olding the dispersal and density-dependence radii to 1. Regardless

f the frequency-dependence radius, T −cells die out for the group I

atrix #7 ( Fig. 7 b). For group II matrix #8 and group III matrix

22 the frequencies of T −approach their non-spatial ESS values as

he frequency-dependence radius increases ( Fig. 7 b). 

Interactions become random with respect to cell type once the

requency dependence radius encompasses the entire field. When

his happens the equilibrium of the spatial model must converge

n the ESS of the non-spatial model. The probability of a fo-

al cell interacting with a neighbor of type j ∈ T equals the over-

ll frequency of type j . The saturated equilibrium frequencies are

ery close to the ESS (with maximal difference ± 0.001). As the

requency-dependence radius increases all cell types exhibit an in-

reasingly clumped dispersion ( Figs. 7 and 13 ). The variance-to-

ean ratio increases with the frequency-dependence radius be-

ause the game now involves distant cells even as daughter cells

emain close together. 

.2. Effect of the dispersal radius 

We compared the outcomes of the spatial game when the dis-

ersal radius was set to 0.5, 1, 10, and 50, while holding the
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Fig. 7. Effect of the frequency-dependence radius. (a) Saturated equilibrium frequency of T −cells for matrices #7, #8 and #22. (b) Saturated equilibrium variance-to-mean 

ratios of all types for matrices #7, #8 and #22. 

Fig. 8. Effect of the dispersal radius. (a) Saturated equilibrium frequency of T −for matrices #7, #8 and #22. (b) Saturated equilibrium variance-to-mean ratios of all types 

for matrices #7, #8 and #22. 
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requency-dependence and density-dependence radii at 1. Like in-

reasing the frequency-dependence radius, increasing the dispersal

adius results in a convergence of the cell type frequencies on the

SS ( Fig. 8 b). Moreover, when the dispersal neighborhood covers

he entire field (dispersal radius of 50), the spatial equilibrium fre-

uencies are nearly identical to their ESS (with difference ± 0.001).

ncreasing the dispersal radius reduces the variance-to-mean ratio

or all cell types. A high dispersal radius disperses daughter cells

idely and creates a within cell type dispersion pattern that is ran-

om or even over-dispersed ( Figs. 8 b and 13 ). 

.3. Effect of the density-dependence radius 

We compared the outcome of the spatial game when the

ensity-dependence radius is set to 0.5, 1, 10, and 50, while hold-

ng the frequency-dependence and dispersal radii at 1. The fre-

uency of cell types in the saturated community converge to

he ESS as the density-dependence radius increases. Group I ma-

rix #7 leads to no T −cells in the field. For group II matrix #8

nd group III matrix #22 the frequencies of T −approach their

on-spatial ESS values as the density-dependence radius increases

 Fig. 9 b). We observe very high levels of clumping by cell type

hen the density-dependence radius is 10 and 50. Curiously, a

ensity-dependence radius of 10 results in a higher variance-to-

ean ratio than a density-dependence radius of 50 ( Fig. 9 b). When

he density-dependence radius is low the tumor expands to fill
he entire space ( Fig. 11 a). At a high density-dependence radius of

0 the tumor becomes a number of densely packed clusters with

mpty spaces between these clusters ( Fig. 10 b). Each cluster has

 very high density in the interior and a much lower density at

ts exterior. With a density-dependence radius that encompasses

he entire space ( = 50 ), we observed one large cluster of cells

 Fig. 10 c). A large density-dependence radius permits cells to pro-

iferate rapidly and for prolonged periods. It takes longer for den-

ity limitations to be reached. Yet, the low dispersal radius causes

ells to bunch up as clusters ( = 10 ) or as a single cluster ( = 50 ;
igs. 11 c, 12 and 13 ). 

. Concluding remarks 

We used an agent-based, spatially-explicit model to study tu-

or dynamics as an evolutionary game. The individual cancer cells

epresent the players, three cell types represent their strategies,

nd interactions between cells result in payoffs that influence a

iven cell’s proliferation rate. We used a continuous space model

eaning that cancer cells can occupy any point in the space. We

ncluded density-dependent effects where limited space and re-

ources place upper bounds on the number and density of can-

er cells inhabiting the resulting tumor. We included frequency-

ependent effects by having three cell types. The proliferation rate

f a given cancer cell is influenced by its type and the cell types
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Fig. 9. Effect of the density-dependence radius. (a) Saturated equilibrium frequency of T −for matrices #7, #8 and #22. (b) Saturated equilibrium variance-to-mean ratios of 

all types for matrices #7, #8 and #22. 

Fig. 10. The appearance of the simulated tumors for matrix #22 when the density-dependence radius is set to: (a) 1, (b) 10, and (c) 50. Each figure is at saturated equilibrium 

following 20 0 0 generations. 

Fig. 11. Cell numbers per subsquare of the simulated tumors for matrix #22 when the density-dependence radius is set to: (a) 1, (b) 10, and (c) 50. These cell density 

distributions correspond to the panels of Fig. 10 . 

Fig. 12. Simulated tumors after 20 0 0 generations for matrices (a) #7, (b) #8, and (c) #22. The density-dependence radius has been set to 50, thus resulting in densely 

packed tumors. Furthermore, there are varied levels of clumping by cell type and by matrix as shown by the variance-to-mean ratios. For matrix #8 and #22, the T −cells 

are strongly clumped and over-dispersed, respectively. 
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Fig. 13. Simulated tumors resulting from setting either the frequency-dependence, dispersal, or density-dependence radius to the highest level (shown as the rows) while 

holding the other two at 1. The columns represent different payoff matrices, and the simulations were run for 20 0 0 generations insuring a saturated equilibrium. 
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round it. The tumor itself grows as daughter cells disperse some

istance from proliferating cells. 

The model is intended for metastatic castrate-resistant prostate

ancer where up to three different cell types may coexist within

he tumor: T + (cells with androgen receptors and requiring an ex-

ernal source of testosterone), T P (cells capable of producing their

wn testosterone, some of this becomes publicly available to other

ells), and T − (cells that lack androgen receptors, and neither syn-

hesize nor require testosterone). We extend a matrix game model

ased upon these three cancer cell types and their known biology

 Zhang et al., 2016 ). Of interest in the modeling is the resulting

uccess and frequency of the T − cells as this likely relates to the

uccess of subsequent therapy. 

Advanced prostate cancer generally metastasizes to the bone

nd may eventually form tumors in one to over a dozen locations

ithin the patient’s skeleton. Such tumors seem to be largely com-

osed of T + cells that respond well to anti-androgen therapy. But,

herapy may fail and the tumor progresses to metastatic andro-

en resistance. This may occur through the emergence of T P cells

nd/or T − cells. By producing testosterone, T P cells “rescue” the

 

+ cells and may promote their resurgence within the progress-

ng cancer. The next line of therapy (e.g., abiraterone) targets the

echanisms used to create testosterone. If T − cells are absent to

are then such therapy should show success, but if T − cells form

 sizeable portion of the tumor, then such patients will be non-

esponders and the targeted therapy may fail immediately. The

nderlying matrix game can take on 22 distinct forms based on

he rank-ordering of payoffs within the matrix. Interestingly, 12 of

hese show an absence of T − at the ESS, 4 show a low frequency

f T − cells coexisting with T + and T P cells, while 6 show a high

requency of T − cells at the ESS. 

Our model is intended to make several advances and contribu-

ions to spatially-explicit models of tumor growth. First, we con-

ider different mortality regimes that result in substantially dif-
erent patterns of tumor growth. In comparing scenarios corre-

ponding to different mortality regimes we see distinctive tran-

ient and saturated equilibria. Second, we compare the saturated

quilibria frequencies of cell types in the spatial game with the

SS of the non-spatial matrix game. Third, we vary the neighbor-

ood size over which density-dependent and frequency-dependent

ffects can occur – such a case study had not yet been performed

ith spatial models. Fourth, we can vary the dispersal distance of

aughter cells - this is an important component of what have been

ermed “grow-or-go” spatial models of tumor growth where cancer

ells are presumed to have a trade-off between proliferation rate

nd dispersal ability ( Gallaher and Anderson, 2013 ). 

We ran six scenarios corresponding to mortality regimes rep-

esenting extremes of stochastic mortality rates versus fixed cell

ifespans, and rapid decomposition versus no decomposition of

ead cells. With a fixed lifespan, the tumor grows outwards as a

ing leaving behind a core of dead cells that eventually decompose

o leave an empty interior. This mimics the formation of a necrotic

ore as seen in many tumors. A ring of dead cells forms a bar-

ier that retards the proliferation of nearby living cells. But, even-

ually some daughter cells cross into the space left by the now de-

omposed dead cells. The living cells that cross the barrier create

heir own smaller rings of proliferation and mortality that main-

ain various empty “necrotic” spaces. These successive generations

f proliferation and death create an ever changing mosaic of rings

f living cells, dead cells and empty spaces. While we did not ex-

lore this in detail, it presents an intriguing simulation applica-

le to real tumors where the necrotic regions are not static but

ubject to recolonization. When dead cells never decompose and

imply accumulate the simulated tumor at first grows outwards

ven as a necrotic core forms. In this case the necrotic region be-

omes crowded with dead cells and can never be recolonized by

iving cancer cells. In the absence of continued expansion, the tu-

or would eventually run out of space and becomes a mass of
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dead cells. What of actual tumors? A fairly regular turnover of cells

within the tumor via cell births and deaths and a rapid decom-

position of dead cells are likely the norm ( Gordon, 2003; Nathan,

2006 ). Necrotic regions likely occur not because of fixed life spans

of cancer cells, but because of tumor heterogeneity in other prop-

erties such as blood flow, oxygen and pH. 

With respect to the frequency of cancer cell types, we exam-

ined the transient and saturated equilibria of the model tumors.

We observe an interesting difference between these two equilibria,

which corresponds to actual tumors. Prostate cancer at an early

stage, i.e., in our case in a transient phase, is likely more treatable

as the number of T − cells remains low. Ideally, treatment should

start at this early stage and this makes studying spatial dynamics

at a transient phase important. Yet, diagnosis or therapy may not

occur until a saturated equilibrium has occurred where a given tu-

mor has reached a large size and become less treatable. 

In our spatial model, the saturated equilibrium frequencies of

cell types frequently deviated from the non-spatial ESS, and such

discrepancies vary with the 22 possible payoff matrices. Matri-

ces with an ESS of just two cell types show no discrepancies be-

tween the spatial and non-spatial models. When the ESS includes

all three cell types, the rarest strategy at the ESS (generally the

T + or T − cell type) tends to suffer in the spatial game and exhibit

a lower steady-state frequency than predicted by the non-spatial

ESS. In fact, for some matrices with very low T − frequencies at the

non-spatial ESS, T − goes extinct for most replicates of the simula-

tions. Clumping or kin effects explain this property of the spatial

model. With a relatively small dispersal radius, cell types become

clumped and hence a cell type interacts with its own type more

than would be expected by chance. This is a standard property

of many spatial models, and in fact can promote the evolution of

cooperation ( Ohtsuki et al., 2006 ). But here, this matrix model of

prostate cancer “punishes” like interacting with like, and so pos-

itive assortative interactions reduce proliferation rates. The more

clumped a cell type, the greater this disadvantage. With just two

cell types, there is little clumping. With three cell types, all else

equal, the rarer cell types become more clumped, and T − seems to

become more clumped than either T P or T + . 
The clumping of cell types observed in our spatial model has

significance for drawing inferences from the distribution of differ-

ent cell types within actual tumors. The spatial segregation of cell

types sometimes observed in actual tumor biopsies may indicate

underlying heterogeneity in blood vasculature, pH, or position with

respect to the edge or interior of the tumor ( Friedl and Wolf, 2003;

Mansury et al., 2002 ). But, as in our model, it may not indicate any

underlying habitat structure within the tumor. The clumped distri-

bution of cancer cells by type may simply reflect limited disper-

sal of daughter cells following proliferation. As expected, increas-

ing the dispersal radius eliminates clumping and results in a con-

vergence of the spatial model’s cell-type frequencies with those of

the non-spatial ESS. Complete convergence occurs when the dis-

persal radius encompasses the entire space as well. 

While a small dispersal radius promotes clumping, a small

frequency-dependence radius acts against clumping as like inter-

acting with like suppresses proliferation. The emergent level of

clumping reflects these opposing forces. Like the dispersal ra-

dius, increasing the frequency-dependence radius results in con-

vergence of the spatial model’s cell type frequencies to those of

the non-spatial ESS – but with an important caveat. Increasing the

frequency-dependence radius actually results in extensive clump-

ing by cell type, sometimes resulting in the near perfect segrega-

tion of cell types in space. When the frequency-dependence radius

encompasses the entire tumor, then cell-cell interactions occur at

random, regardless of clumping. Hence, frequency interactions no

longer counterbalance the clumping caused by a limited dispersal

radius. Our results highlight to the need to pay more attention to
he interplay between the distance over which cells disperse and

he neighborhood size over which frequency-dependent interac-

ions take place. For instance, in grow-or-go models dispersal oc-

urs at a larger scale than cell-cell interactions. The converse hap-

ens in models where a cell experiences the collective or diffuse

ctions of a large number of perhaps distant neighbors. Measuring

r inferring the spatial scale of dispersal versus cell-cell interac-

ions within actual tumors from biopsies presents both an oppor-

unity and a challenge. 

In our spatial model, we could independently vary the radius

t which tumor cells experience the negative effects of competi-

ion from neighbors and the radius at which cells interact in a

requency dependent manner based on their type. Whereas in-

reasing the dispersal radius and the frequency-dependence ra-

ius causes the cell type frequencies of the spatial model to con-

erge to those of the non-spatial ESS, increasing the density-

ependence radius merely causes incomplete convergence. Increas-

ng the density-dependence radius relative to the dispersal ra-

ius results in different dispersion patterns of cells regardless of

ype. When smaller than the dispersal radius, the cancer cells

ecome almost uniformly dispersed in space. When the density-

ependence and dispersal radii are equal, the cancer cells are es-

entially randomly dispersed. When the density-dependence radius

s ten times the dispersal radius, the model no longer produces

 continuous tumor spread across the space. Instead, the space is

ccupied by clusters of smaller tumors. The small dispersal radius

romotes clumping. The empty spaces between the micro-tumors

emain because of the long-distance suppression of proliferation by

he densely packed cells of the clusters. Finally, when the suppres-

ive effects of the cancer cells on each other’s proliferation rates

pan the entire space, then the tumor becomes a very dense sin-

le mass that does not expand to fully fill the space. The disper-

al radius keeps cells clumped while the space-wide suppression

f proliferation prevents expansion beyond the boundaries of the

umor mass into the empty space. 

Spatial models that have been introduced in the context of evo-

utionary game theory are usually confined to spatially explicit

tructures, such as graphs or lattices, including fields composed

f identical hexagonal or square cells. In these models, individ-

als are represented as vertices of the graph or cells in a regu-

ar field. Individuals usually interact with their immediate neigh-

ors and their payoffs and strategies depend on and evolve with

hese interactions. The simplest forms of such models were orig-

nally adopted to study evolution of social behaviors ( Nowak and

ay, 1993 ). Early models had no births and deaths. Later ones

ncluded additional interactions, reproduction, and death rules to

tudy evolution ( Gerlee and Anderson, 2007; Reichenbach et al.,

0 07; Simpson et al., 20 07 ). Empty vertices, created when cells die

r move and limitations on cells growth were included in these

odels as well. While such models are more general than the

riginal ones, they are still limited by assumptions on the struc-

ure of the field and definitions of the neighborhood. In this pa-

er we went beyond rigid spatial models, by putting forward a

ontinuous-space model of tumorigenesis. The advantage of using

uch a model is the flexibility of the continuous space and of the

ction rules. In our previous work we have shown how varying

 fixed number of neighbors majorly impacts the predictions of

rid models ( Abrudan et al., 2016 ). Moreover, the continuous-space

odels seem to be more appropriate for modeling cancer where

umor cells may occur throughout a space and at very different lo-

al densities. Even though more rigid spatial models can be com-

utationally efficient, this efficiency decreases rapidly when popu-

ation sizes become large or when the radii of density-dependence,

requency-dependence, and dispersal increase. Our implementation

f the continuous-space model is efficient. A simulation running on
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 standard computer cloud takes a matter of seconds or maximally

inutes, independent of population or interaction radii size. 

In summary, we have shown that spatially-explicit evolution-

ry models often provide outcomes that differ from those in non-

patial ones. This, together with the spatial character of real tu-

ors, suggests that space is a key element of tumorigenesis. More-

ver, we have shown that continuous-space models are appropri-

te for modeling tumor growth, as they allow for flexibility of in-

eraction rules and the spatial scales crucial to cell proliferation.

n this work, we show how the scale at which cancer cells dis-

erse and experience frequency- and density-dependent processes

trongly influences the frequency and dispersion patterns of cell

ypes within the tumor. As a result, we have discovered various

istinct cell dispersion patterns in space, such as near complete

ell segregation, random cell dispersion, and over-dispersion. Fur-

hermore, the scale at which density-dependent processes oper-

te can alter tumor architecture and create continuous masses of

ells, separate clusters of cancer cells, and dense tumor masses sur-

ounded by empty space. Some of our results accord with clinical

nd laboratory observations and others may help in the further de-

elopment of spatial evolutionary models of cancer. 

Our model and results invite future research. First, the scenario

n which rings of dead cells form needs further and more detailed

nalysis, as results from such scenarios resemble real tumors for

any cancer types. Second, the spatial model can be expanded to

nclude blood vasculature and the immune system to determine

umor growth and heterogeneity. Third, the model can be used to

est various regimes of cancer treatment. Of particular interest are

herapies such as adaptive or double-bind therapies ( Gatenby et al.,

0 09a; 20 09b ). For our model, such therapies can be found using

tackelberg game theory ( Sta ̌nková, 2009 ). 
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able 5 

ransient equilibrium frequencies of spatial dynamics for each fitness matrix for scenari

eviations are calculated from 5 runs of the simulation. 

Scenario 1 

Transient equilibrium Standard Transient equilib

frequencies deviation frequencies 

Group # ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) 

I (positive) 1 (0.5455,0.4543,0.0 0 02) (0.0 039,0.0 040,0.0 0 01) (0.5468,0.4532,0

2 (0.5428,0.4564,0.0 0 08) (0.0 035,0.0 041,0.0 0 04) (0.5474,0.4528,0)

3 (0.5468,0.4523,0.0 0 09) (0.0 044,0.0 041,0.0 0 07) (0.5479,0.4521,0)

4 (0.4543,0.5455,0.0 0 02) (0.0 030,0.0 031,0.0 0 02) (0.4509,0.5491,0)

5 (0.4545,0.5446,0.0 0 09) (0.0 048,0.0 041,0.0 011) (0.4492,0.5508,0

6 (0.4560,0.5435,0.0 0 05) (0.0 035,0.0 035,0.0 0 05) (0.4519,0.5481,0)

7 (0.3902,0.6095,0.0 0 03) (0.0 025,0.0 023,0.0 0 04) (0.3986,0.6014,0)

9 (0.3922,0.6070,0.0 0 08) (0.0 044,0.0 042,0.0 0 05) (0.3995,0.6005,0

11 (0.3320,0.6670,0.0010) (0.0 036,0.0 028,0.0 010) (0.3323,0.6677,0)

14 (0.5411,0.4583,0.0 0 06) (0.0 031,0.0 034,0.0 0 08) (0.5466,0.4534,0

17 (0.4502,0.5491,0.0 0 07) (0.0 034,0.0 038,0.0 013) (0.450 0,0.550 0,0

20 (0.3914,0.6081,0.0 0 05) (0.0 045,0.0 039,0.0 0 09) (0.3943,0.6057,0)

II (neutral) 8 (0.3846,0.5970,0.0184) (0.0 046,0.0 053,0.0 052) (0.3951,0.6049,0)

10 (0.3144,0.6655,0.0211) (0.0 057,0.0 042,0.0 061) (0.3282,0.6718,0)

12 (0.5282,0.4251,0.0467) (0.0 060,0.0 057,0.0 020) (0.5594,0.4406,0

15 (0.4371,0.5391,0.0238) (0.0 024,0.0 063,0.0 048) (0.4453,0.5547,0)

III (negative) 13 (0.4208,0.4362,0.1430) (0.0 073,0.0 044,0.0 064) (0.4220,0.4381,0.

16 (0.3745,0.4 887,0.136 8) (0.0 056,0.0 055,0.0 067) (0.3824,0.4943,0

18 (0.3341,0.5609,0.1149) (0.0 060,0.0 041,0.0 059) (0.3421,0.5549,0.

19 (0.2008,0.3801,0.4191) (0.0 055,0.0 047,0.0 069) (0.2084,0.4548,0

21 (0.2323,0.6414,0.1263) (0.0 086,0.0 065,0.0 082) (0.2096,0.6653,0

22 (0.2157,0.6639,0.1204) (0.0 054,0.0 055,0.0 062) (0.3307,0.6693,0)
This work is sponsored by the European Union’s Horizon 2020

esearch and innovation program under the Marie Skłodowska-

urie grant agreement No 690817 , National Institute of Health

rants U54CA143970-1 and RO1CA170595 , and a grant from the

ames S. McDonnell Foundation . 

ppendix A. Basics of the non-spatial model 

In this appendix we introduce a non-spatial replicator equation

odel from Zhang et al. (2016) that we compare to our spatial

odel. When individuals interact randomly with others over the

ntire field, the saturated equilibrium strategy frequencies of our

patial game match those of the non-spatial ESS. In general, the

eplicator dynamics ( Hofbauer and Sigmund, 1998 ) represent one

f the dynamics which, under certain conditions, converge to the

SS. 

For each cell type i ∈ T , the replicator dynamics define the time

hange ˙ x i of cell frequency x i : 

˙ 
 i = x i (e i A x � − x A x � ) , i ∈ T , (3) 

ith x (0) = ( 1 / 3 , 1 / 3 , 1 / 3 ) . Here matrix A is the fitness (or payoff)

atrix, x = (x T + , x T P , x T − ) is a vector of cell type frequencies, and

 i is the i th row of a 3 × 3 identity matrix. Each element A ( i, j )

f the fitness matrix A defines a probability that a cell of type i

ill produce a daughter cell of the same type when interacting

ith a cell of type j ∈ T . The non-spatial model (3) assumes that

he population of cells is well mixed and, therefore, a probability

hat a cell of type i meets a cell of type j at time t is given by the

requency of the j cells in the entire population at time t . 

We assume that each cell type competes most with its own

ype. Intra-type interactions do not increase proliferation rates. For

his reason, we have set the diagonal elements of A equal to 0

o reflect this lack of effect. The off-diagonal elements are posi-

ive (but less than 1) to reflect the lower competition between cell

ypes and the gains that can accrue to a cell type from interac-

ions with an alternative cell type. Standardizing the elements so

hat the off-diagonal elements are 0 may introduce a possible ar-

ifact. In the spatial model these elements are the probability of

roliferating when two cells interact, and hence no proliferation
os 1, 2 and 3. The frequencies per matrix are averaged over 5 runs, the standard 

Scenario 2 Scenario 3 

rium Standard Transient equilibrium Standard 

deviation frequencies deviation 

( T + , T P , T −) T + , T P , T − T + , T P , T −

) (0.0 042,0.0 042,0) (0.5557,0.4 4 43,0) (0.0 028,0.0 028,0) 

 (0.0 035,0.0 035,0) (0.5463,0.4537,0) (0.0 042,0.0 042,0) 

 (0.0 039,0.0 039,0) (0.5471,0.4529,0) (0.0 035,0.0 035,0) 

 (0.0 038.0.0 038,0) (0.4557,0.5443,0) (0.0 027,0.0 027,0) 

) (0.0 027,0.0 027,0) (0.4509,0.5491,0) (0.0 057,0.0 057,0) 

 (0.0 044,0.0 044,0) (0.4518,0.5485,0) (0.0 032,0.0 032,0) 

 (0.0 056,0.0 056,0) (0.3903,0.6097,0) (0.0 045,0.0 045,0) 

) (0.0 021,0.0 021,0) (0.3924,0.6076,0) (0.0 040,0.0 040,0) 

 (0.0 037,0.0 037,0) (0.3349,0.6751,0) (0.0 036,0.0 036,0) 

) (0.0 049,0.0 049,0) (0.5522,0.4478,0) (0.0 044,0.0 044,0) 

) (0.0 074,0.0 074,0) (0.4482,0.5518,0) (0.0 022,0.0 022,0) 

 (0.0 025,0.0 025,0) (0.3923.0.6067,0) (0.0 049,0.0 049,0) 

 (0.0 074,0.0 047,0) (0.3946,0.6054,0) (0.0 053,0.0 053,0) 

 (0.0 036,0.0 036,0) (0.3254,0.6746,0) (0.0 036,0.0 036,0) 

) (0.0 058,0.0 058,0) (0.5536,0.4464,0) (0.0 048,0.0 048,0) 

 (0.0 033,0.0 033,0) (0.4534,0.5466,0) (0.0 048,0.0 048,0) 

1399) (0.0 049,0.0 059,0.0 067) (0.4301,0.4306,0.1393) (0.0 051,0.0 044,0.0 052) 

.1233) (0.0 064,0.0 078,0.0 077) (0.3759,0.4808,0.1333) (0.0 059,0.0 026,0.0 047) 

1030) (0.0 058,0.0 047,0.0 031) (0.3186,0.5811,0.1003) (0.0 043,0.0 071,0.0 048) 

.3108) (0.0 034,0.0 035,0.0 047) (0.1931,0.5098,0.3071) (0.0 043,0.0 052,0.0 028) 

.1251) (0.0 051,0.0 040,0.0 050) (0.2112,0.6596,0.1292) (0.0 067,0.0 055,0.0 070) 

 (0.0 057,0.0 057,0) (0.3284,0.6716,0) (0.0 022,0.0 022,0) 

http://dx.doi.org/10.13039/100010665
http://dx.doi.org/10.13039/100000002
http://dx.doi.org/10.13039/100000913
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Table 6 

Transient equilibrium frequencies of spatial dynamics for each fitness matrix for scenarios 4, 5 and 6. The frequencies per matrix are averaged over 5 runs, the standard 

deviations are calculated from 5 runs of the simulation. 

Scenario 4 Scenario 5 Scenario 6 

Transient equilibrium Standard Transient equilibrium Standard Transient equilibrium Standard 

frequencies deviation frequencies deviation frequencies deviation 

Group # ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) 

I (positive) 1 (0.5503,0.4497,0) (0.0 048,0.0 048,0) (0.5466,0.4534,0) (0.0 045,0.0 045,0) (0.5526,0.4472,0.0 0 01) (0.0 050,0.0 051,0.0 0 02) 

2 (0.5517,0.4483,0) (0.0 051,0.0 051,0) (0.54 94,0.44 97,0.0 0 09) (0.0 031,0.0 027,0.0 018) (0.5526,0.4468,0.0 0 06) (0.0 025,0.0 029,0.0 0 07) 

3 (0.5520,0.4480,0) (0.0 026,0.0 026,0) (0.5463,0.4537,0) (0.0 037,0.0 038,0.0 0 01) (0.5490,0.4502,0.0 0 08) (0.0 040,0.0 045,0.0 0 06) 

4 (0.4490,0.5510,0) (0.0 025,0.0 025,0) (0.4521,0.5479,0) (0.0 028,0.0 028,0) (0.4461,0.5537,0.0 0 02) (0.0 052,0.0 045,0.0 0 04) 

5 (0.4563,0.5437,0) (0.0 036,0.0 036,0) (0.4525,0.5463,0.0012) (0.0 050,0.0 045,0.0 0 09) (0.4467,0.5510,0.0013) (0.0 046,0.0 059,0.0 024) 

6 (0.4526,0.5474,0) (0.0 034,0.0 034,0) (0.4519,0.5481,0) (0.0 045,0.0 045,0) (0.4505,0.5491,0.0 0 04) (0.0 062,0.0 062,0.0 0 07) 

7 (0.40 0 0,0.60 0 0,0) (0.0 048,0.0 048,0) (0.3970,0.6030,0) (0.0 027,0.0 027,0) (0.3999,0.6001,0) (0.0 053,0.0 053,0) 

9 (0.4039,0.5961,0) (0.0 028,0.0 028,0) (0.3958,0.6042,0) (0.0 018,0.0 018,0) (0.3963,0.6032,0.0 0 05) (0.0 055,0.0 056,0.0 0 06) 

11 (0.3294,0.6706,0) (0.0 045,0.0 045,0) (0.3282,0.6705,0.0012) (0.0 048,0.0 035,0.0 017) (0.3330,0.6663,0.0 0 08) (0.0 038,0.0 037,0.0 013) 

14 (0.5583,0.4417,0) (0.0 057,0.0 057,0) (0.5478,0.4512,0.0010) (0.0 047,0.0 041,0.0 0 08) (0.54 95,0.44 91,0.0014) (0.0 036,0.0 027,0.0 015) 

17 (0.4 4 43,0.5457,0) (0.0 053,0.0 053,0) (0.4527,0.5468,0.0 0 05) (0.0 036,0.0 033,0.0 011) (0.4526,0.5469,0.0 0 05) (0.0 032,0.0 048,0.0 0 09) 

20 (0.3954,0.6046,0) (0.0 033,0.0 033,0) (0.3972,0.6021,0.0 0 07) (0.0 052,0.0 058,0.0 0 06) (0.3896,0.6029,0.0012) (0.0 047,0.0 063,0.0 023) 

II (neutral) 8 (0.3934,0.6066,0) (0.0 027,0.0 027,0) (0.3881,0.5961,0.0158) (0.0 022,0.0 041,0.0 048) (0.3884,0.5978,0.0139) (0.0 053,0.0 069,0.0 055) 

10 (0.3289,0.6711,0) (0.0 058,0.0 058,0) (0.3129,0.6699,0.0172) (0.0 039,0.0 043,0.0 022) (0.3119,0.6670,0.0210) (0.0 059,0.0 064,0.0 051) 

12 (0.5436,0.4564,0) (0.0 063,0.0 063,0) (0.5241,0.4311,0.0449) (0.0 054,0.0 030,0.0 051) (0.5316,0.4150,0.0534) (0.0.031,0.0 055,0.0 028) 

15 (0.4420,0.5580,0) (0.0 059,0.0 059,0) (0.4396,0.5390,0.0215) (0.0 037,0.0 059,0.0 044) (0.4335,0.5406,0.0259) (0.0 037,0.0 048,0.0 059) 

III (negative) 13 (0.4204,0.4372,0.1424) (0.0 070,0.0 061,0.0 058) (0.4205,0.4 4 47,0.1348) (0.0 062,0.0 063,0.0 054) (0.4253,0.4254,0.1494) (0.0 038,0.0 041,0.0 041) 

16 (0.3798,0.4719,0.1283) (0.0 078,0.0 034,0.0 075) (0.3743,0.4895,0.1362) (0.0 031,0.0 029,0.0 048) (0.36 81,0.4 932,0.1387) (0.0 062,0.0 020,0.0 055) 

18 (0.3239,0.5654,0.1107) (0.0058,0.0101,0.0059) (0.3236,0.5582,0.1181) (0.0 041,0.0 039,0.0 031) (0.3396,0.5520,0.1084) (0.0 073,0.0 059,0.0 066) 

19 (0.1022,0.5954,0.3024) (0.0 058,0.0 049,0.0 066) (0.2073,0.3667,0.4260) (0.0 069,0.0 054,0.0 057) (0.2154,0.3840,0.4006) (0.0 040,0.0 054,0.0 049) 

21 (0.2188,0.6638,0.1174) (0.0 073,0.0 059,0.0 078) (0.2224,0.6419,0.1357) (0.0 061,0.0 028,0.0 043) (0.2224,0.6534,0.1242) (0.0 062,0.0 060,0.0 056) 

22 (0.3378,0.6622,0) (0.0 061,0.0 061,0) (0.2177,0.6594,0.1228) (0.0 049,0.0 029,0.0 046) (0.2386,0.6300,0.1314) (0.0 041,0.0 028,0.0 037) 

Fig. 14. Division of the matrices into groups per variation of the value from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} . 
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can occur when two cells of the same type interact. Thus, at least

two cell types must be present for the tumor to grow. Frequency-

dependent processes favor the coexistence of the diverse cell types

even as density-dependence limits the overall population size of

cancer cells within the space. In Appendix D we show that having

0 elements on the diagonal of the matrix does not influence any of

the conclusions qualitatively. 

Therefore, A has the form 
t  

e  

c

T + T P T −

T + 0 a b

T P c 0 d

T − e f 0 

The rest of the elements of matrix A are assumed to be distinct

rom each other and from the interval (0, 1). 

From pairwise experiments in vitro and from the properties of

he individual types of cancer cells we derive the following in-

qualities regarding the coefficients a –f ( Zhang et al., 2016 ): a > f,

 > e, b < d, a > b, c > d , and e > f . 
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Table 7 

Saturated equilibrium frequencies for each matrix for scenarios 1, 4, 5, and 6. The frequencies are averaged over 5 runs, the corresponding standard deviation is calculated as well. For scenarios 2 and 3 we do not obtain 

saturated spatial equilibria, as all living cells go extinct once the space is filled. 

Scenario 1 Scenario 4 Scenario 5 Scenario 6 

G Saturated Saturated Saturated Saturated 

r equilibrium Standard equilibrium Standard equilibrium Standard equilibrium Standard 

o frequencies deviation frequencies deviation frequencies deviation frequencies deviation 

u ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) ( T + , T P , T −) 

p # 

I 1 (0.5474,0.4526,0) (0.0 028,0.0 028,0) – – (0.5511,0.4489,0) (0.0 035,0.0 035,0) (0.5481,0.4519,0) (0.0 048,0.0 048,0) 

2 (0.5482,0.4518,0) (0.0 037,0.0 037,0) – – (0.5464,0.4536,0) (0.0 023,0.0 023,0) (0.5494,0.4506,0) (0.0 046,0.0 046,0) 

3 (0.5469,0.4531,0) (0.0 045,0.0 045,0) – – (0.5502,0.4498,0) (0.0 029,0.0 029,0) (0.5517,0.4483,0) (0.0 035,0.0 035,0) 

4 (0.4515,0.5449,0) (0.0 038,0.0 038,0) – – (0.4509,0.5491,0) (0.0 027,0.0 027,0) (0.4502,0.5498,0) (0.0 014,0.0 014,0) 

5 (0.4505,0.5495,0) (0.0 032,0.0 032,0) – – (0.4511,0.5489,0) (0.0 038,0.0 038,0) (0.4457,0.5543,0) (0.0 024,0.0 024,0) 

6 (0.4512,0.5488,0) (0.0 041,0.0 041,0) – – (0.4524,0.5476,0) (0.0 039,0.0 039,0) (0.4497,0.5503,0) (0.0 017,0.0 017,0) 

7 (0.3987,0.6013,0) (0.0 036,0.0 036,0) – – (0.3964,0.6036,0) (0.0 0 08,0.0 0 08,0) (0.3952,0.6048,0) (0.0 038,0.0 038,0) 

9 (0.3992,0.6018,0) (0.0 024,0.0 024,0) – – (0.40 0 0,0.60 0 0,0) (0.0 0 09,0.0 0 09,0) (0.3977,0.6023,0) (0.0 028,0.0 028,0) 

11 (0.3287,0.6713,0) (0.0 019,0.0 019,0) – – (0.3290,0.6710,0) (0.0 034,0.0 034,0) (0.3273,0.6727,0) (0.0 037,0.0 037,0) 

14 (0.5482,0.4510,0) (0.0 019,0.0 019,0) – – (0.5456,0.4544,0) (0.0 050,0.0 050,0) (0.5451,0.4549,0) (0.0 061,0.0 061,0) 

17 (0.4561,0.5439,0) (0.0 039,0.0 039,0) – – (0.4521,0.5479,0) (0.0 037,0.0 037,0) (0.4530,0.5470,0) (0.0 057,0.0 057,0) 

20 (0.3991,0.6009,0) (0.0 014,0.0 014,0) – – (0.3972,0.6028,0) (0.0 046,0.0 046,0) (0.4006,0.5994,0) (0.0 018,0.0 018,0) 

II 8 (0.3916,0.6059,0.0025) (0.0 039,0.0 033,0.0 010) – – (0.3925,0.6045,0.0030) (0.0 042,0.0 039,0.0 044) (0.4006,0.5994,0) (0.0 042,0.0 042,0) 

10 (0.3280,0.6691,0.0029) (0.0 023,0.0 024,0.0 0 08) (0.3318,0.6682,0) (0.0 020,0.0 020,0) (0.3270,0.66 88,0.004 8) (0.0 046,0.0 039,0.0 033) (0.3280,0.6720,0) (0.0 031,0.0 031,0) 

12 (0.5419,0.4531,0.0050) (0.0 032,0.0 034,0.0 0 09) – – (0.5470,0.4489,0.0041) (0.0 034,0.0 041,0.0 032) (0.5526,0.4474,0) (0.0 044,0.0 044,0) 

15 (0.4494,0.5453,0.0053) (0.0 017,0.0 016,0.0 0 08) – – (0.4490,0.5454,0.0056) (0.0 029,0.0 020,0.0 036) (0.4527,0.5473,0) (0.0 026,0.0 026,0) 

III 13 (0.3324,0.3368,0.3308) (0.0 035,0.0 027,0.0 016) (0.5543,0.4457,0) (0.0 021,0.0 021,0) (0.3327,0.3366,0.3307) (0.0 028,0.0 031,0.0 021) (0.3263,0.3401,0.3336) (0.0 056,0.0 038,0.0 063) 

16 (0.2506,0.4123,0.3371) (0.0 015,0.0 018,0.0 013) (0,0.3961,0.6039) (0,0.0 037,0.0 037) (0.2513,0.4109,0.3378) (0.0 051,0.0 052,0.0 057) (0.2070,0.4004,0.3927) (0.0 059,0.0 066,0.0071) 

18 (0.2518,0.5151,0.2327) (0.0 039,0.0 030,0.0 037) (0.4011,0.5989,0) (0.0 033,0.0 033,0) (0.2446,0.5203,0.2351) (0.0 046,0.0 058,0.0 035) (0.2557,0.5363,0.2080) (0.0 058,0.0 060,0.0 052) 

19 (0.1342,0.3638,0.5021) (0.0 029,0.0 039,0.0 042) (0,0.4049,0.5951) (0,0.0 031,0.0 031) (0.1301,0.3663,0.5036) (0.0 049,0.0 037,0.0 059) (0.0097,0.3915,0.5988) (0.0 046,0.0 022,0.0 031) 

21 (0.1525,0.6020,0.2455) (0.0 035,0.0 036,0.0 042) (0.3275,0.6725,0) (0.0 059,0.0 059,0) (0.1537,0.5988,0.2475) (0.0 044,0.0 039,0.0 038) (0.1579,0.6393,0.2028) (0.0 057,0.0 043,0.0 061) 

22 (0.2218,0.6469,0.1313) (0.0 031,0.0 028,0.0 032) (0.3294,0.6706,0) (0.0 023,0.0 023,0) (0.2203,0.6612,0.1184) (0.0 044,0.0 048,0.0 052) (0.2745,0.6752,0.0503) (0.0 020,0.0 028,0.0 048) 
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Table 8 

The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for the enhanced matrices, when dispersal, frequency-dependence and density- 

dependence radii are all equal to 1. The standard deviation of spatial equilibrium frequencies and variance-to-mean ratios over 5 runs are reported in Table 9 . Table 4 shows 

saturated equilibrium frequencies and variance-to-mean ratios of the original matrices. 

ESS Saturated equilibrium frequencies Variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.40 0 0, 0.60 0 0, 0) (0.3979, 0.6021, 0) (2.2267, 1.5470, -) 

8 (0.3659, 0.5659, 0.0682) (0.3752, 0.6133, 0.0115) (2.1368, 1.3431, 10.2605) 

22 (0.2016, 0.6285, 0.1699) (0.2214, 0.6217, 0.1569) (5.0451, 1.4141, 6.7156) 

Table 9 

The standard deviation of spatial equilibrium frequencies and variance-to-mean ratios over 5 runs . 

Std of spatial equilibrium frequencies Std of variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.0 031,0.0 031,0) (0.0223,0.0291,0) 

8 (0.0 044,0.0 037,0.0 013) (0.0300,0.0158,0.0397) 

22 (0.0 042,0.0 034,0.0 029) (0.0413,0.0207,0.0138) 

Table 10 

The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced matrices, when the dispersal and density-dependence radii are both 

set to 1, while the frequency-dependence radius is 10. The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to 

those in Table 9 . For comparison, Fig. 7 shows the saturated equilibrium frequencies and variance-to-mean ratios of the original matrices. 

ESS Saturated equilibrium frequencies Variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.40 0 0, 0.60 0 0, 0) (0.3970, 0.6030,0) (17.9747,15.2977,0) 

8 (0.3659, 0.5659, 0.0682) (0.3757,0.5686,0.0557) (16.0118,11.0791,18.6105) 

22 (0.2016, 0.6285, 0.1699) (0.2138,0.6231,0.1631) (11.0032,7.1923,13.8021) 

Table 11 

The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced matrices, when the frequency-dependence and density-dependence 

radii are set to 1, while the dispersal radius is 10. The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to 

those in Table 9 . For comparison, Fig. 8 shows the saturated equilibrium frequencies and variance-to-mean ratios of the original matrices. 

ESS Saturated equilibrium frequencies Variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.40 0 0, 0.60 0 0, 0) (0.3966,0.6034,0) (2.6659,3.7850,-) 

8 (0.3659, 0.5659, 0.0682) (0.3682,0.5603,0.0715) (2.5072,3.5029,2.9234) 

22 (0.2016, 0.6285, 0.1699) (0.2003,0.6309,0.1688) (2.1402,3.5098,1.9857) 

Table 12 

The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced matrices, when the frequency-dependence and dispersal radii are set 

to 1, while the density-dependence radius is 10. The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to those 

in Table 9 . For comparison, Fig. 9 shows the saturated equilibrium frequencies and variance-to-mean ratios of the original matrices. 

ESS Saturated equilibrium frequencies Variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.40 0 0, 0.60 0 0, 0) (0.3970,0.6030,0) (59.2311,41.9001,-) 

8 (0.3659, 0.5659, 0.0682) (0.3468,0.6131,0.0401) (40.7464,39.8969,51.0012) 

22 (0.2016, 0.6285, 0.1699) (0.1898,0.6902,0.1201) (20.9789,21.1066,28.6123) 
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The first three inequalities are based on observations regarding

which cell type receives the greater benefit when interacting with

a particular cell type: 

• a > f : A T + cell profits more than a T −cell from interacting with

a T P cell, because a T P cell produces a systematic testosterone

that a T + cell needs for proliferation. When testosterone is avail-

able a T + cell is expected to have a higher proliferation rate

than a T −cell. 
• c > e : A T + creates a cellular infrastructure that a T P cell bene-

fits from. Therefore, we expect that a T P cell is more fit than a

T −cell when interacting with a T + cell. 
• b < d : When interacting with a T −cell, a T + cell receives no

testosterone to proliferate, while a T P cell may profit from less

competition for resources. 

The rest of the inequalities are based on observations regarding

which cancer cell type provides more benefit to a particular cell

type: 
• a > b : A T + cell has a higher chance to proliferate when interact-

ing with a T P cell than when interacting with a T −cell, because

a T P cell produces testosterone which a T + cell needs. 
• c > d : A T P cell will be more fit when interacting with a T + cell

than compared to its interaction with a T −cell, as a T P cell

gains extra resources from cellular infrastructure that a T + cell

builds. 
• e > f : A T −cell profits more from interacting with a T + cell than

from interacting with a T P cell, because a T −may profit from

the cellular infrastructure the T + cell produces, while it cannot

utilize a systematic testosterone produced by a T P cell. 

While we know well which of the coefficients in the fit-

ess matrix A are bigger than others, it is currently impossi-

le to measure their precise values. Therefore, as it was done in

hang et al. (2016) , we assume that parameters a –f have distinct

alues from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. There are 22 differ-

nt orderings of such coefficients a –f satisfying the six inequalities
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Table 13 

The frequencies and variance-to-mean ratios achieved at the saturated spatial equilibrium for enhanced matrices, when the dispersal and density-dependence radii are set 

to 1, while the frequency-dependence radius is 50. The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to 

those in Table 9 . For comparison, Fig. 7 shows the saturated equilibrium frequencies and variance-to-mean ratios of the original matrices. 

ESS Saturated equilibrium frequencies Variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.40 0 0, 0.60 0 0, 0) (0.4015, 0.5985, 0) (27.3108, 21.9151, -) 

8 (0.3659, 0.5659, 0.0682) (0.3648, 0.5653, 0.0700) (26.7213, 24.5489, 28.6670) 

22 (0.2016, 0.6285, 0.1699) (0.2012, 0.6300, 0.1688) (33.3553, 13.5125, 23.4429) 

Table 14 

The frequencies and variance-to-mean ratios achieved at the spatial equilibrium for enhanced matrices, when the frequency-dependence and density-dependence radii are 

set to 1, while the dispersal radius is 50. The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to those in 

Table 9 . For comparison, Fig. 8 shows the saturated equilibrium frequencies and variance-to-mean ratios of the original matrices. 

ESS Saturated equilibrium frequencies Variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.40 0 0, 0.60 0 0, 0) (0.4014, 0.5986, 0) (1.0855, 1.0912, –) 

8 (0.3659, 0.5659, 0.0682) (0.3642, 0.5667, 0.0691) (1.1300, 1.0619, 1.0503) 

22 (0.2016, 0.6285, 0.1699) (0.1990, 0.6304, 0.1706) (0.9689, 1.1189, 0.9624) 

Table 15 

The frequencies and variance-to-mean ratios at saturated equilibria for enhanced matrices, when the frequency-dependence and dispersal radii are set to 1, while the 

density-dependence radius is 50. The standard deviations of the equilibrium frequencies and variance-to-mean ratios are very small and comparable to those in Table 9 . For 

comparison, Fig. 9 shows the saturated equilibrium frequencies and variance-to-mean ratios of the original matrices. 

ESS Saturated equilibrium frequencies Variance-to-mean ratio 

# ( T + ,T P , T −) ( T + ,T P , T −) ( T + ,T P , T −) 

7 (0.40 0 0, 0.60 0 0, 0) (0.4005, 0.5995, 0) (1.1327, 1.0842, -) 

8 (0.3659, 0.5659, 0.0682) (0.3686, 0.5669, 0.0644) (1.064 8, 0.96 89, 1.0774) 

22 (0.2016, 0.6285, 0.1699) (0.1979, 0.6312, 0.1709) (1.0221, 1.1004, 1.0951) 
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 Table 2 ), defining 22 distinct payoff matrices. We show how the

on-spatial model varies with respect to different a –f matrix coef-

cients. We provide a sensitivity analysis of the non-spatial model

egarding the matrix coefficients in Appendix B . 

ppendix B. Sensitivity analysis of the non-spatial model with 

espect to individual matrix coefficients 

We provide a parameter sensitivity analysis regarding the val-

es of a –f . The protocol is as follows: For each of the values from

he set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, vary the element of matrix A

orresponding to this value by adding and subtracting 0.01, 0.02,

.., 0.09, for all 22 matrices from Table 2 , while keeping all other

alues the same. Note that position of the element with a particu-

ar value in matrix A may vary. For each of these 18 variations, we

eport how many matrices belong to each of the groups, i.e., group

 (positive), group II (neutral) and group II (negative), and mean

nd variance of the difference of the ESS frequencies obtained with

espect to the base case with original values of the parameter. Pos-

tive, neutral and negative refer to therapeutic prognosis based on

he frequency of T- cells that are unresponsive to abiraterone. The

esults are summarized in Fig. 14 . For all parameter variations the

 groups of matrices are maintained, which means that our obser-

ations are not sensitive to the magnitude of the matrix elements

ut rather their rank ordering. 

ppendix C. Tables of transient and saturated equilibria in six 

cenarios 

This appendix includes Tables 5–7 with detail information re-

arding the transient and saturated equilibria for all scenarios in-

roduced in this paper. 
ppendix D. Exploring the effects of zero diagonal in the 

patial game 

Here, we explore the consequences of having 0’s along the di-

gonal of our matrix model. To do so we added 0.2 to all elements

f payoff matrix A . We shall refer to this matrix with increased ele-

ents as the enhanced matrix as opposed to the original matrix . By

dding a constant amount to each element, the non–spatial ESSs

emain the same ( Table 2 ). 

We focused on Scenario 1 (mortality regime: 5 % stochastic

eath rate and removal of dead cells after 5 generations). We ex-

mined three representative matrices, enhanced matrices #7, #8

nd #22 from groups I, II and III, respectively, under all combi-

ations of the three frequency-dependence radii ( = 1, 10, 50), the

hree density-dependence radii ( = 1, 10, 50), and the three dis-

ersal radii ( = 1, 10, 50). In total there are 21 matrix and parame-

er combinations. We ran simulations for 20 0 0 generations and ran

ve replicates for each parameter combination. The five replicates

xhibited very small standard deviations in terms of equilibrium

requencies and variance-to-mean ratios of cell types. The follow-

ng tables show the average outcome for each enhanced matrix. 

In terms of conclusions, there were no qualitative differences

etween the results from the enhanced and original matrices

 Tables 9 , 13–15 and Figs. 15 and 16 ). When the dispersal,

requency-dependence and density-dependence radii are small, 

he enhanced matrices produce greater within cell-type clumping

higher variance-to-mean ratios). This is to be expected. When the

ensity-dependence limit permits, a cell that interacts with its own

ype now has some probability of proliferating which adds another

ike-type cell to the clump. When the enhanced matrix has no T −

t the non-spatial ESS, both the enhanced and original matrices for

he spatial game result in the ESS frequencies of T + and T P cells.

hen the non-spatial ESS has a very small frequency of T −, the

esulting spatial game (for enhanced matrix) results in a near ab-

ence of T −. When the non-spatial ESS has a sizable frequency of
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Fig. 15. Snapshots of the field at saturated equilibria for enhanced matrices (a) #7, (b) #8 and (c) #22, when the density-dependence radius is set to 10. 

Fig. 16. Simulated tumors for enhanced matrices resulting from setting either the frequency-dependence, dispersal, or density-dependence radius to the highest level (shown 

as the rows) while holding the other two at 1. The columns represent different payoff matrices, and the simulations were run for 20 0 0 generations insuring a saturated 

equilibrium. 
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T −, the resulting spatial game (for enhanced matrix) stabilizes on

frequencies of T − that are below the non-spatial ESS. However, the

discrepancy between T − in the spatial game (for enhanced matrix)

and the non-spatial game becomes smaller. 

In exploring the consequences of increasing either the

frequency-dependence, dispersal, or density-dependence radii in

the spatial games, the games with enhanced matrices yield higher

variance-to-mean ratios for the increased frequency-dependence

radii ( Tables 10 and 13 ), but there is little change when the other

2 radii are increased as well ( Tables 11 , 14,12 and 15 ). When in-

creasing these particular radii, the resulting spatial equilibrium fre-

quencies of the original and enhanced matrices are almost iden-

tical. Visually, there is no difference regarding the dispersion of

cells when the density-dependence radius is 10 or 50, in compari-

son to the original matrices. For both, a density-dependence radius

of 10 still yields numerous small clumps of cells across the space

( Fig. 15 ) and a radius of 50 yields a single large cluster in the mid-

dle of the space ( Fig. 16 ). 
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