Dataset Open Access

SlimageNet64

Anonymous


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Few-Shot Learning, Continual Few-Shot Learning, Meta-Learning, Benchmark, Benchmarks, Dataset, Datasets</subfield>
  </datafield>
  <controlfield tag="005">20200224101017.0</controlfield>
  <controlfield tag="001">3672132</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">14196</subfield>
    <subfield code="z">md5:54a45176ac56e3aea7f286d3e1d10538</subfield>
    <subfield code="u">https://zenodo.org/record/3672132/files/LICENSE.md</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1654468852</subfield>
    <subfield code="z">md5:9a65cef93aa81029b5ce70094ed8978a</subfield>
    <subfield code="u">https://zenodo.org/record/3672132/files/SlimageNet64.tar.bz2</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-07</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:3672132</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Anonymous</subfield>
    <subfield code="a">Anonymous</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">SlimageNet64</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Non-Commercial)</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;SlimageNet64 is new variant of ImageNet64&amp;times;64&amp;nbsp;(Chrabaszcz et al., 2017),&amp;nbsp;derived&lt;br&gt;
from Slim and ImageNet. SlimageNet64 is ideal for few-shot learning, continual learning and meta-learning research. It consists of 200 instances from each of the 1000 object categories of the ILSVRC-2012 dataset (Krizhevsky et al., 2012; Russakovsky et al., 2015), for a total of 200K RGB images with a resolution of 64 &amp;times; 64 &amp;times; 3 pixels. We created this dataset from the downscaled version of ILSVRC-2012, ImageNet64x64, as reported in (Chrabaszcz et al., 2017), using the box downsampling Pillow library.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3672131</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3672132</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
698
582
views
downloads
All versions This version
Views 698697
Downloads 582582
Data volume 916.6 GB916.6 GB
Unique views 634633
Unique downloads 178178

Share

Cite as