Dataset Open Access
Anonymous
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Anonymous</dc:creator> <dc:date>2020-02-07</dc:date> <dc:description>SlimageNet64 is new variant of ImageNet64×64 (Chrabaszcz et al., 2017), derived from Slim and ImageNet. SlimageNet64 is ideal for few-shot learning, continual learning and meta-learning research. It consists of 200 instances from each of the 1000 object categories of the ILSVRC-2012 dataset (Krizhevsky et al., 2012; Russakovsky et al., 2015), for a total of 200K RGB images with a resolution of 64 × 64 × 3 pixels. We created this dataset from the downscaled version of ILSVRC-2012, ImageNet64x64, as reported in (Chrabaszcz et al., 2017), using the box downsampling Pillow library.</dc:description> <dc:identifier>https://zenodo.org/record/3672132</dc:identifier> <dc:identifier>10.5281/zenodo.3672132</dc:identifier> <dc:identifier>oai:zenodo.org:3672132</dc:identifier> <dc:relation>doi:10.5281/zenodo.3672131</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:subject>Few-Shot Learning, Continual Few-Shot Learning, Meta-Learning, Benchmark, Benchmarks, Dataset, Datasets</dc:subject> <dc:title>SlimageNet64</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 698 | 697 |
Downloads | 582 | 582 |
Data volume | 916.6 GB | 916.6 GB |
Unique views | 634 | 633 |
Unique downloads | 178 | 178 |