Dataset Open Access

SlimageNet64

Anonymous


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Anonymous</dc:creator>
  <dc:date>2020-02-07</dc:date>
  <dc:description>SlimageNet64 is new variant of ImageNet64×64 (Chrabaszcz et al., 2017), derived
from Slim and ImageNet. SlimageNet64 is ideal for few-shot learning, continual learning and meta-learning research. It consists of 200 instances from each of the 1000 object categories of the ILSVRC-2012 dataset (Krizhevsky et al., 2012; Russakovsky et al., 2015), for a total of 200K RGB images with a resolution of 64 × 64 × 3 pixels. We created this dataset from the downscaled version of ILSVRC-2012, ImageNet64x64, as reported in (Chrabaszcz et al., 2017), using the box downsampling Pillow library.</dc:description>
  <dc:identifier>https://zenodo.org/record/3672132</dc:identifier>
  <dc:identifier>10.5281/zenodo.3672132</dc:identifier>
  <dc:identifier>oai:zenodo.org:3672132</dc:identifier>
  <dc:relation>doi:10.5281/zenodo.3672131</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:subject>Few-Shot Learning, Continual Few-Shot Learning, Meta-Learning, Benchmark, Benchmarks, Dataset, Datasets</dc:subject>
  <dc:title>SlimageNet64</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
698
582
views
downloads
All versions This version
Views 698697
Downloads 582582
Data volume 916.6 GB916.6 GB
Unique views 634633
Unique downloads 178178

Share

Cite as