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ABSTRACT

Multicarrier modulation (MCM) methods have been attract-

ing considerable attention lately. In this paper, we address
MCM techniques based on wavelet packets for QAM (quadra-

ture amplitude modulation) and PM (phase modulation) sym-

bol constellations. We �rst discuss the design of complex
wavelet packets, which serve as orthonormal carriers for MCM,

and then describe a DWMT (discrete wavelet multitone)

scheme for transmitting QAM and PM symbols. We consider
both blind and non-blind schemes for retrieving the symbols

at the receiver. Simulations have been carried out to study

the performance with both the schemes.

1 INTRODUCTION

Recently, multicarrier modulation (MCM) schemes have been

attracting a lot of attention. In MCM, the channel is par-
titioned into a number of subchannels and each of which is

assigned a distinct carrier. These carriers are orthogonal to

each other.

The discrete multitone (DMT) modulation, a DFT based
MCM technique, can be implemented with FFT algorithm

thereby achieving substantial reduction in computation. But,

the amplitude responses of the Fourier transform of the DFT
bases have high degree of spectral overlap among themselves.

On the other hand, discrete wavelet multitone (DWMT) mod-

ulation system uses wavelet packet bases, which can be de-
signed to achieve high level of spectral containment.

The DWMT system for PAM symbol constellations is de-

scribed in [2]. In this paper, we address DWMT system for

QAM and PM symbol constellations. We �rst discuss the de-
sign of complex wavelet packet bases and then describe the

DWMT scheme. We also extend a recently proposed DWMT

technique with blind equalization [8] to QAM, PM and higher
order PAM symbol constellations.

Notation: Bold faced upper and lower case letters denote

matrices and vectors, respectively. A
T , A� and A

y rep-

resent transpose, conjugate and conjugate-transpose of A.
~H(z) = H

y(1=z�), I is the identity matrix, x(n) � y(n) de-
notes convolution of x(n) and y(n), and F (z) is z-transform
of f(n), j =

p�1. �(n) is the unit impulse function.

2 DESIGN OF COMPLEX BASES

Any complex multicarrier bases, to be used for MCM, should

exhibit the desired orthogonality. Further, the real and imag-
inary parts of the complex bases should be spectrally similar

and also orthogonal to each other. One such design method
based on combined sine and cosine modulation has been de-

scribed in [3]. However, the design contains too many con-

strains resulting in poorer stopband attenuation. Here we
discuss Method 1 design only and refer to [6] for Method 2

design.

2.1 Method 1

We �rst design an M -band cosine modulated �lter bank [1]
h
0T (z) = [H 0

0(z) H
0
1(z) � � � H 0

M�1(z)]. Let E0(z) denote the

polyphase matrix of the �lter bank. Then h0(z) = E
0(z)e(z)

where eT (z) = [1 z�1 � � � z�M+1]. The cosine modulated �l-
ters are orthogonal since E0(z) is paraunitary [1].

Here, we consider the case for M even. To get a pair of

bases in the same band, we generate a modi�ed �lter bank
h
oT (z) = [H o

0(z) H
o
1(z) � � � H o

M�1(z)] as

h
o(z) =

1p
2
Rh

0(z) =
1p
2
RE

0(z)e(z) (1)

where

R =

2
6664

1 1 0 0 � � � 0

1 �1 0 0 � � � 0

0 0 1 1 � � � 0
0 0 1 �1 � � � 0

: : : : : : : :

3
7775 (2)

The polyphase matrix of the new �lter bank, Eo(z), is
1p
2
RE

0(z). Since RT
R = 2I, ~Eo(z)Eo(z) = I. Thus, Eo(z)

is paraunitary.

The bandwidth of the modi�ed �lters is twice that of the
original cosine modulated �lters. They are spectrally similar

in pairs, at least in the passband. From the �lters so gener-

ated, we form the complex impulse responses of the analysis
bank �lters by choosing the impulse responses of a pair of �l-

ters in the same band as the real and imaginary parts. We

thus obtain M=2 complex �lters from M -band cosine mod-
ulated �lter bank. The impulse responses of the other M=2

complex �lters are the complex conjugates of the �rst set of

M=2 �lters designed as above. Thus, the impulse responses of
the M complex analysis �lters are

hk(n) =
1p
2
h
o
2k(n) + j

1p
2
h
o
2k+1(n)

hM�1�k(n) =
1p
2
h
o
2k(n)� j

1p
2
h
o
2k+1(n) (3)

for 0 � k � M=2 � 1 and 0 � n � L1 � 1, where L1 is the
length of the prototype �lter.



The impulse responses of the corresponding synthesis �lters

are given by

fk(n) = h
�
k(L1�1�n); 0 � k �M�1 and 0 � n � L1�1:

(4)

We refer to these responses as the complex wavelet packet

bases, which constitute the carriers for multicarrier modula-
tion. They satisfy the orthogonality relation
X
n

fk(n)f
�
l (n + iM) = �(k � l)�(i); 0 � k; l �M � 1: (5)

3 DWMT Modulation SYSTEM

In this section, we describe the multicarrier system for trans-
mitting QAM and PM symbols.

3.1 A Discrete Multicarrier System

Consider the multicarrier system shown in Fig. 1. C(z) and
W (z) represent the channel and the pre-detection equalizer,

respectively. ffm(n)g correspond to IDFT bases for the DMT

case and complex wavelet packet bases for the DWMT case.
Let N be the length of the bases. Then N = L1 for DWMT

bases and N = M for IDFT bases. In the case of DMT,

pM = M , i.e., p = 1, and in DWMT pM = L1. The mth

�lter in the receiver is given by F 0
m(z) = z�d�N ~Fm(z), where

~Fm(z) = F �
m(1=z

�). Let B(z) = z�DB0(z) be the minimum

mean square error estimate of C(z)W (z) and � be the nomi-
nal delay introduced by B0(z). Then, d = KM�D�� where

K is chosen to make d non-negative so that the receiver �l-

ters are causal. From the above choice of the modulator and
demodulator �lters, their impulse responses are related as

f
0
m(n) = f

�
m(N + d� n); d+ 1 � n � N + d (6)

and f 0m(n) = 0 otherwise. The modulator �lters satisfy the

orthogonality relation

+1X
n=�1

fm1
(n)f�m2

(n+ lM) = �(l)�(m1 �m2): (7)

Similar relation holds for the demodulator �lters also.
xm(n) represents the input symbol in the nth block that is

to be transmitted on mth carrier. To get a real output from

the multicarrier modulator in the DMT case, the symbols in
a block should satisfy the relation xM�m(n) = x�m(n) 0 <

m < M
2
, with x0(n) and xM=2(n) real for M even. For the

DWMT case, the modulator output would be real provided the
input symbols in a block satisfy xM�m�1(n) = x�m(n); 0 �
m � M=2 � 1 for M even.

The subchannel outputs are added together to produce a
single output sequence fy(n)g

y(n) =

M�1X
m=0

+1X
l=�1

xm(l)fm(n� lM): (8)

The output of W (z) is given by

r(n) = w(n) � c(n) � y(n) +w(n) � q(n): (9)

where fq(n)g is the channel noise sequence. The demodulator
output sample in nth block of mth

1 subchannel is given by

�m1
(n) =

+1X
i=�1

r(i)f 0m1
(Mn� i): (10)

To understand the correspondence between xm(n) and

�m(n), consider the special case where the pre-detection equal-
izer W (z) perfectly equalizes the channel, i.e., C(z)W (z) =

z��. Let d = KM �� and d be non-negative. Then,

�m1
(n) = xm1

(n�K � p) + noise term: (11)

Thus, with perfect pre-detection equalization, xm1
(n) can be

estimated based on �m1
(n + p1) only, where p1 = K + p,

without incorporating any other post-detection equalization.

In the general case, there will be ISI both across the sub-

channels and across the blocks. To mitigate the e�ect of ISI,

we use a post-detection equalizer [2], which linearly combines
the demodulator subchannel outputs to yield the estimates of

the transmitted symbols. Note that in the DWMT case, the

transmitted symbols in the ith block are made up of the in-
put symbols from the blocks i; i� 1; � � � ; i � p + 1. Also, the

in
uence of an input symbol in the ith block exists for blocks

i; i + 1; � � � ; i + p � 1. Thus, to get an estimate of the input
symbol of ith1 block in the mth

1 subchannel, we perform the

following smoothing

x̂m1
(i1) =

�X
k=��

X
m02
(m1)

�m1
(m0

; k)�m0(i1 + k + p1): (12)

In the above expression, 
(m1) denotes the set of indices of

the subchannels that are used in the estimation of the trans-

mitted symbols in the mth
1 subchannel, and � denotes the

number of blocks, prior to and after the desired block, used

in the smoothing. The design of the post-detection equalizer

is equivalent to choosing the parameters �m1
(m0; k) so as to

minimize the contribution from the channel noise and the in-

terfering symbols to x̂m1
(i1) [6].

3.2 Finite-Length Pre-detection Equalizer

The motivation for using a pre-detection equalizer is to reduce
the length of the impulse response of the equalized channel.

This will reduce the spread of the bases that is caused due to

the channel, thereby reducing the number blocks that cause
ISI. We designed this equalizer following the algorithm de-

scribed in [4].

4 BLIND EQUALIZATION

Recently, a blind equalization algorithm for wavelet packet
based multicarrier modulation scheme has been proposed for

the case of binary PAM symbols [8]. The motivation behind

the equalization in [8] is that, any channel response can be
divided into a set of bands (subchannels), possibly nonuni-

form, where its behavior closely approximates that of a sim-

ple attenuation and delay channel. Since a wavelet packet is
a narrow band sequence, a suitably designed wavelet packet

would be undistorted (though attenuated) by passage through

the channel. Thus, if a sequence of symbols are used to mod-
ulate a set of wavelet packets, called the carriers, then no

elaborate equalization is required at the receiver (provided

the wavelet packets have negligible overlap in the frequency
domain). However, compensation is required for the delay in-

troduced by the channel in each subchannel. Thus, the equal-

ization problem essentially reduces to that of determining the
delays.



4.1 Blind Equalization Algorithm for Complex

Symbols Case

The wavelet packet based multicarrier modulator is as shown
in Fig. 1. The receiver, consisting of the matched �lters, de-

lays and decimators (see Fig. 2), performs the role of equalizer

here. The demodulator �lters are related to the modulator �l-
ters by

Hm(z) = z
�(pM�1) ~Fm(z) 0 � m � M � 1; (13)

where p is the minimum integer that makes the �lters causal.

To simplify the notation, we de�ne Gmk(z)
�
=

~Hm(z)Hk(z)C(z) Then, the output of the k
th subchannel after

equalization is given by

X̂k(z) =

M�1X
m=0

Xm(z)z
�p �

Gmk(z)z
��k+1

�
#M+

�
Q(z)Hk(z)z

��k
�
#M

(14)
which can be expressed in the time domain as

x̂k(n) =

M�1X
m=0

+1X
l=�1

gmk(Ml � �k + 1)xm(n� l� p)

+

+1X
l=�1

hk(l)q(Mn� l � �k): (15)

If gmk(Ml� �k +1) = 0 for k 6= m and some �k, then there

will be no interchannel interference, and if gkk(Ml � �k + 1)

is a delta sequence for the same �k, then there will be no
interblock interference. The problem, therefore, is to choose

�k. We can show [7] that

max
�k

M�1X
m=0

+1X
l=�1

jgmk(Ml � �k + 1)j4 =

max
�k

�
2(var[x̂k(n)])

2 � var[x̂k
2(n)]

�
(16)

and

max
�k

M�1X
m=0

+1X
l=�1

jgmk(Ml��k+1)j4 = min
�k

var[x̂2k(n)] (17)

The criterion which selects �k as per (16) is called the max-

imum square variance algorithm while the one corresponding

to (17) is called the minimum square variance algorithm.
In general, the channel will introduce di�erent attenuation

for di�erent subchannels. So, for higher order symbol con-

stellations, decision levels will be di�erent for di�erent sub-
channels. We have to know the attenuation level for each of

the subchannels to set the thresholds. We choose the aver-

age power in the input symbols at the transmitter as unity.
If the average power in the equalized output is normalized

to unity, then the decision thresholds can be chosen from the

signal space diagram corresponding to the transmitted symbol
constellation.

5 SIMULATION RESULTS

We conducted computer simulations to study the performance

of the DWMT system with both post-detection and blind
equalization schemes. The impulse response of the channel

used in the simulation is [0.227, 0.460, 0.668, 0.460, 0.227].

This channel has a linear phase and a spectral null. We have
considered three cases of j
(m1)j where j
(m1)j denotes the
size of 
(m1). Larger value of j
(m1)j means higher com-

plexity for the post-detection equalizer. The results (see Ta-
bles 1 and 2) show that the DWMT performs better than

the DMT for all the three cases, and signi�cantly better for

j
(m1)j=6. This is because the DFT bases have higher spec-
tral overlap among the subchannels, and hence, needs larger

value of j
(m1)j for compensating the ISI contributed from

the interchannel interference. Comparing the results of Ta-
bles 2 and 3, we see that the performance with post-detection

equalization is signi�cantly better than with blind equaliza-

tion. However, the performance of the blind scheme can be
improved by spanning the given channel with more subchan-

nels (see Table 4).

One way to reduce the overall bit error probability is to use
nonuniform bit loading, i.e., to assign less number of bits per

symbol for the poorer subchannels and more number of bits

per symbol for good subchannels. The optimum assignment
of bits per subchannel is described in [5]. It is found that the

overall bit error probability reduces signi�cantly by allocating

di�erent number of bits to di�erent subchannels according to
their frequency response.

6 CONCLUSIONS

In this paper, we have presented the design of complex wavelet

packet bases, which constitute the orthogonal carriers for
the DWMT system, and studied its performance with post-

detection and blind equalization schemes. Also, we compared

its performance with that of DMT.
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Figure 1: Discrete multicarrier modulation system
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Figure 2: Receiver for blind equalization system

Table 1: Average bit error probability in each subchannel for the DMT system with post-detection equalization for 16-QAM
symbol constellation (M=16)

subchannel number overall

SNR j
(m1)j 0 1 2 3 4 5 6 7 8 value

6 0.0009 0.0071 0.0164 0.0346 0.0513 0.3540 0.2376 0.0397 0.0098 0.0933

no 10 0.0001 0.0007 0.0010 0.0134 0.0092 0.3205 0.2133 0.0245 0.0017 0.0729

noise 16 0 0.0001 0.0002 0.0002 0.0004 0.1152 0.0274 0.0005 0.0001 0.0180

6 0.0169 0.0255 0.0804 0.0809 0.1306 0.4644 0.3666 0.1064 0.0670 0.1621

30dB 10 0.0005 0.0051 0.0090 0.0067 0.0968 0.4504 0.3505 0.0874 0.0519 0.1290
16 0.0004 0.0014 0.0020 0.0057 0.0797 0.4422 0.3653 0.0824 0.0341 0.1245

Table 2: Average bit error probability in each subchannel for the DWMT system with post-detection equalization for 16-QAM

symbol constellation (M=16 and L1=64)

subchannel number overall

SNR j
(m1)j 0 1 2 3 4 5 6 7 value

6 0 0 0 0 0.0188 0.2931 0 0 0.0390

no 10 0 0 0 0 0.0101 0.2788 0 0 0.0361

noise 16 0 0 0 0 0 0.0664 0 0 0.0083

6 0 0 0 0 0.2903 0.4944 0.1772 0.0063 0.1210

30 dB 10 0 0 0 0 0.2913 0.4934 0.1774 0.0061 0.1210

16 0 0 0 0 0.3067 0.4989 0.1769 0.0044 0.1234

Table 3: Average bit error probability in each subchannel for DWMT system with blind equalization for 16-QAM symbol

constellation (M = 16 and L1=64)

subchannel number overall

SNR 0 1 2 3 4 5 6 7 value

no noise 0 0 0.0033 0.0762 0.2474 0.4804 0.1395 0.0066 0.1192

30 dB 0 0 0.0042 0.0789 0.2675 0.4970 0.1774 0.0207 0.1307

Table 4: Average bit error probability in each subchannel for the DWMT system with blind equalization for 16-QAM symbol
constellation (M=32 and L1=128)

subchannel number overall

SNR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 value

no noise 0 0 0 0 0 0 0 0.016 0.160 0.363 0.488 0.496 0.110 0.015 0.001 0 0.103
30dB 0 0 0 0 0 0 0.001 0.016 0.175 0.389 0.495 0.499 0.184 0.054 0.016 0.004 0.114


