Software Open Access
Marcelino, V. R.; Clausen, P.T.C.L; Buchmann, J.P.; Wille, M.; Iredell, J.R.; Meyer, W.; Lund, O.; Sorrell, T.C.; Holmes, E.C.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3668497</identifier> <creators> <creator> <creatorName>Marcelino, V. R.</creatorName> <givenName>V. R.</givenName> <familyName>Marcelino</familyName> <affiliation>The University of Sydney</affiliation> </creator> <creator> <creatorName>Clausen, P.T.C.L</creatorName> <givenName>P.T.C.L</givenName> <familyName>Clausen</familyName> <affiliation>Technical University of Denmark</affiliation> </creator> <creator> <creatorName>Buchmann, J.P.</creatorName> <givenName>J.P.</givenName> <familyName>Buchmann</familyName> <affiliation>The University of Sydney</affiliation> </creator> <creator> <creatorName>Wille, M.</creatorName> <givenName>M.</givenName> <familyName>Wille</familyName> <affiliation>The Peter Doherty Institute for Infection and Immunity</affiliation> </creator> <creator> <creatorName>Iredell, J.R.</creatorName> <givenName>J.R.</givenName> <familyName>Iredell</familyName> <affiliation>The University of Sydney</affiliation> </creator> <creator> <creatorName>Meyer, W.</creatorName> <givenName>W.</givenName> <familyName>Meyer</familyName> <affiliation>The University of Sydney</affiliation> </creator> <creator> <creatorName>Lund, O.</creatorName> <givenName>O.</givenName> <familyName>Lund</familyName> <affiliation>Technical University of Denmark</affiliation> </creator> <creator> <creatorName>Sorrell, T.C.</creatorName> <givenName>T.C.</givenName> <familyName>Sorrell</familyName> <affiliation>The University of Sydney</affiliation> </creator> <creator> <creatorName>Holmes, E.C.</creatorName> <givenName>E.C.</givenName> <familyName>Holmes</familyName> <affiliation>The University of Sydney</affiliation> </creator> </creators> <titles> <title>CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>metagenomics</subject> <subject>microbiome</subject> </subjects> <dates> <date dateType="Issued">2019-05-18</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3668497</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsDocumentedBy" resourceTypeGeneral="Preprint">10.1101/641332</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3668496</relatedIdentifier> </relatedIdentifiers> <version>1.0.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>CCMetagen is a software to identify taxa from metagenome data. This repository contains CCMetagen version 1.0.0, which was benchmarked with other software in the original CCMetagen publication.</p> <p>High-throughput sequencing of DNA and RNA from environmental and host-associated samples (metagenomics and metatranscriptomics) is a powerful tool to assess which organisms are present in a sample. Taxonomic identification software usually align individual short sequence reads to a reference database, sometimes containing taxa with complete genomes only. This is a challenging task given that different species can share identical sequence regions and complete genome sequences are only available for a fraction of organisms. A recently developed approach to map sequence reads to reference databases involves weighing all high scoring read-mappings to the data base as a whole to produce better-informed alignments. We used this novel concept in read mapping to develop a highly accurate metagenomic classification pipeline named CCMetagen. Our pipeline substantially outperforms other commonly used software in identifying bacteria and fungi, and can efficiently use the entire NCBI nucleotide collection as a reference to detect species with incomplete genome data from all biological kingdoms. CCMetagen is user-friendly and the results can be easily integrated into microbial community analysis software for streamlined and automated microbiome studies.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 162 | 162 |
Downloads | 11 | 11 |
Data volume | 7.1 MB | 7.1 MB |
Unique views | 150 | 150 |
Unique downloads | 11 | 11 |