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Abstract We present a comparative analysis of changes that occur in the
city public transit networks due to random failures or targeted attacks of dif-
ferent nature that cause malfunctioning of its constituents – stations or links
(rails, roads, etc.) that connect them. We show how does accumulation of such
changes lead to the emergent phenomena that cause break of the transportati-
on system as a whole. Simulating different directed attack strategies, we derive
vulnerability criteria that result in minimal strategies with high impact. As a
case study, we choose London and Paris public transit networks. Our quan-
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titative analysis is performed in the frames of the complex network theory
– a methodological tool that has emerged recently as an interdisciplinary ap-
proach that joins methods and concepts of random graph theory and statistical
physics.

Keywords public transit · attack vulnerability · complex networks ·
percolation
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1 Introduction

Charles Dickens famous novel who’s title is used to name this article starts
one of its chapters with the words ”The traveller fared slowly on his way,
who fared towards Paris from England in the autumn of the year one thou-
sand seven hundred and ninety-two. More than enough of bad roads, bad
equipages, and bad horses, he would have encountered to delay him” [1]. In
those times, there was perhaps not too much difference neither between the
quality of transportation systems in the two countries, nor between typical
reasons that cause its malfunctioning. Although, different historical circum-
stances caused additional impact on traveling security. In our days, general
believe is that again on average not too much difference is observed between
facilities offered by transportation networks of developed countries. However,
available digital databases together with computer-based technologies and an-
alytical approaches allow to quantify the difference and to make a comparative
case study.

The goal of this paper is to compare certain features of the contempo-
rary public transit - public transportation networks (PTN) - of two European
capitals, London and Paris. These cities were chosen both because of a lot
of similarities in their structure and functioning caused by geographical and
social reasons as well as because of a special attraction payed nowadays to
public facilities of London as a capital of the Olympic games 2012. In particu-
lar we will be interested in the reaction of PTN on random failures or targeted
attacks of different nature that cause malfunctioning of is constituents – sta-
tions or links (rails, roads, etc.) that connect them. A comprehensive analysis
of such problem needs simultaneous consideration of both the PTN load (i.e.
traffic and passenger flows) and the PTN structure (i.e. topological properti-
es of a network). Although being feasible in principle, such a task needs an
essential numerical effort and an access to numerous databases of different
origin. Here, we will make only a first but essential step to reach this goal.
Namely, we will consider only the PTN structure and analyze how fragile are
the structures of London and Paris PTN to failure of their constituents. As
we will see below, already such comparison allows to make certain conclusions
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and predictions about robustness of PTN and their behaviour under attacks
of different nature.

The setup of this paper is as follows. In the next section we will briefly
describe the method of our analysis – complex network theory [2,3] – and
overview some relevant studies where this method has already been applied
to analyze transportation networks of different types. We will start discussing
problem of PTN fragility in section 3, there we will show how such problem
is related to the percolation theory [4] and introduce observables that allow
to give a quantitative measure of PTN change under attack. This problem we
be further analyzed in section 4. There, we will make comparative analysis
of London and Paris PTN and of their changes under attacks of different
types. We will conclude by section 5, where we will discuss possible reasons
for differences in PTN robustness and offer criteria that allow to judge about
PTN robustness prior to attack.

2 PTN seen as a complex network

An observation that lines of a public transit routes of a city form a network and
that this network is a complex enough one is a part of our everyday experience.
However, a new sense has been given to a notion of complex network recently:
complex network theory is a new and rapidly developing field of knowledge
that has its routes in random graph theory and statistical physics (see e.g.
recent reviews [2] and monographs [3]). From mathematical point of view, a
network is nothing else but a graph with a set of edges and a set of vertices as
its constituents. Graph theory is well-settled branch of discrete mathematics
that originates from the classical XVIII century works of L. Euler [5]. An
essential breakthrough and a paradigm shift in graph (and in particular in
random graph) theory occurred in 90-ies of last century, when from an analy-
sis of single small graphs and properties of individual vertices or edges (or as
we will name them below of nodes and links) the task of the research shifted to
consideration of statistical properties of graphs (or networks). It was realized,
that numerous natural and man-made structures have a form of a network and
that these networks posses amazing properties, strikingly different from those
of the so-called classical random graph. Such networks are currently known as
complex networks. To name a few, to them belong metabolic, ecological, social,
internet, www, transportation and many networks more. Complex networks
were found to be compact structures (sometimes called small worlds) with
short distance between nodes, high level of correlations and self-organization.
They demonstrate extremely high robustness if their constituents are removed
at random, however they are vulnerable to targeted attacks. Certain their
properties are governed by power laws, which would signal about non-trivial
correlations present in their structure. We set out to show that similar prop-
erties are inherent to the PTN of London and Paris we are interested in our
study.
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Table 1 Some characteristics of the PTNs analyzed in this study. N : number of stations;
R: number of routes. The following characteristics are given: 〈k〉 (mean node degree); `max,
〈`〉 (maximal and mean shortest path length); C (relation of the mean clustering coefficient
to that of the classical random graph of equal size, (3) ); Cb: betweenness centrality (5);
κ(z), κ(k) (c.f. Eqs. (15), (14)); γ (an exponent in the power law (4) fit. More data is given
in [11].

City N R 〈k〉 `max 〈`〉 C CB κ(z) κ(k) γ

London 10937 922 2.60 107 26.5 320.6 1.4·105 1.87 3.22 4.48
Paris 3728 251 3.73 28 6.4 78.5 1.0·104 5.32 6.93 2.62

In general, there exists already a bulk of research [6–12] that gives quan-
titative evidences of the fact that the PTNs share general features of other
transportation networks like the airport, railway, or power grid networks [2].
These features include evolutionary growth, optimization, and usually an em-
bedding in two dimensional (2D) space. First numerical studies of PTNs in
frames of the complex network theory often were devoted to analysis of certain
sub-networks of city transit. Examples are given by the subways of Boston [6,
7], Vienna [7] and some other cities [8], city buses in Poland [9] and China
[10]. However, as far as the bus-, subway- or tram-subnetworks are no closed
systems the inclusion of additional subnetworks has significant impact on the
overall network properties as has been shown for the subway and bus networks
of Boston [6]. Therefore, in further analysis of PTN all such subnetworks were
taken into account [11].

Two PTN analyzed within our study are either operated by a single op-
erator (Traffic for London, TFL) or by small number of operators with a
coordinated schedule (three operators for Paris), as expressed by a central
web site from which our data was obtained.1 The analyzed PTN of London
covers metropolitan area of ’Greater London’ and includes buses, subway, and
tram. Correspondingly, the PTN of Paris which was the subject of our analy-
sis covers the metropolitan area ’aire urbaine’ and comprises buses, RER and
subway. Some characteristics of these networks are given in Table 1. Currently,
different ways to represent a PTN in a form of a graph are exploited [6–13].
In what follows below, we will use the so-called L-space representation [6,9,
11], when a public transport station is represented by a vertex (node) of a
graph and two stations are connected by an edge (link) when there is at least
one PTN rout that successively goes through them. In such representation
the obtained graph – complex network – is most similar to the PTN map.2

Typical size of the network is usually evaluated on the base on `max and 〈`〉,
the maximal and mean shortest path length. The latter is defined by:

〈`〉 =
2

N(N − 1)

∑

i>j

`(i, j), (1)

1 See [11] for a more detailed description of the database.
2 Note, however that multiple links are absent in this graph.
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where N is the number of network nodes, `(i, j) is the length of a shortest
path from node i to j and the sum spans all pairs i, j of sites of the network.
Comparatively low values of 〈`〉 for the PTN under consideration (see Table 1)
bring about their small world structure [11]. Larger value of `max for the PTN
of London corresponds to the larger area covered by the network (as seen, e.g.
from larger number of routes and stations).

The mean and maximal shortest path lengths characterize the network as
a whole and sometimes are referred to as the global properties of a network.
An example of a local property is given by a node degree ki, a number of links
that are connected to the node i. By definition, it is equal to the number of
nodes adjacent to the given one and defines the neighbourhood size of a node i.
Apparently, not all nearest neighbours of the node i are the nearest neighbours
of each other. Their relative number is given by a clustering coefficient:

Ci =
2yi

ki(ki − 1)
, ki ≥ 2, (2)

where yi is the number of links between node i neighbors and Ci = 0 for
ki = 0, 1. In general, clustering reflects specific form of correlation present in
a network: the clustering coefficient of a node also gives the probability of
any two of its randomly chosen neighbors to be connected. A useful numerical
indicator is given by a relation of the mean clustering coefficient of a network
to that of the classical Erdös-Rényi random graph of equal size:

C = 〈Ci〉/CER, (3)

with CER = 2M/N2. The classical Erdös-Rényi random graph is constructed
by completely random linking of N nodes by M links [2,3]. Therefore, the
high values of C given in Table 1 bring about presence of strong correlations in
the networks under consideration. Moreover, London PTN appears to possess
stronger correlation properties than that of Paris.

Another striking difference between the properties of the random graph and
of the PTN under consideration is given by behaviour of the node-degree dis-
tribution P (k), probability that arbitrary chosen node is of degree k. Whereas
the random graph is characterized by Poissonian distribution, and therefore,
by an exponential decay at large k [2,3], it was empirically observed in [11]
that for PTN of London and Paris corresponding distribution function decays
due to the power law:

P (k) ∼ k−γ , k À 1. (4)

The power law decay (4) bring about the scale-free properties of London and
Paris PTN. It is instructive to note already here, that the exponent γ governing
this decay is much smaller for the PTN of Paris, see Table 1. As will become
evident later, this fact has certain consequences for the network fragility.

To some extent, the node degree may be considered as a local measure of
the node importance: intuitively it is clear that hubs play essential role in a
complex network. The importance of a node with respect to the connectivity
between other nodes of the network is measured by the betweenness centrality.
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For a node i, the latter measures the share of the shortest paths between nodes
that this node mediates and is defined as:

CB(i) =
∑

j 6=i 6=k

σjk(i)
σjk

(5)

where σjk is the number of shortest paths between nodes j and k and σjk(i)
is the number of these paths that go via node i. Numerical values of the mean
betweenness centrality are given in Table 1 for the PTN under consideration. In
what follows below we will be interested also in the other centrality measures,
these will be explained in section 3.

3 PTN fragility: observables and attack scenarios

Studies of complex network behaviour at removal of their constituents (nodes
or links) have much in common with studies of lattice percolation phenomenon
[4]. However, the latter occurs on homogeneous structures (lattices) whereas
the non-homogeneity of complex networks gives rise to a variety of phenomena
which are particular for these structures. Empirical analysis of numerous scale-
free real-world networks gave numerous evidences that these networks display
an unexpectedly high degree of robustness under random failure [2,3]. However
they are especially vulnerable to the attacks, that target certain important
network constituents. As we have seen in the previous section, the PTN under
consideration share many common features of complex networks, therefore it
is natural to expect similarities in their behaviour during attack of different
scenarios.

On a lattice, it is the appearance of the spanning cluster that signals an
onset of percolation at given concentration cperc of the lattice constituents
(nodes or links). In turn, the probability that an arbitrary chosen lattice site
belongs to the spanning cluster is naturally used as an order parameter: it
is equal one at c = 1, zero at c = cperc and varies between these two values
for cperc ≤ c ≤ 1. Similar to percolation phenomenon occurs when the giant
connected component (GCC) emerges on an idealized complex network. The
GCC is defined as a connected subnetwork which in the limit of an infinite
network contains a finite fraction of the network. Strictly speaking, the GCC is
absent for any real-world complex network because of its finite size. Therefore,
to monitor changes in the network structure when certain concentration of its
nodes (links) c is removed one often uses the normalized largest components
size, defined as:

S(c) = N1(c)/N, (6)
where N and N1 are the numbers of nodes in the initial network and in its
largest component, correspondingly. Another ’order-parameter-like’ variable
used to judge about the changes in network structure is the mean inverse
shortest path length [14]:

〈`−1〉 =
2

N(N − 1)

∑

i>j

`−1(i, j). (7)



A tale of two cities 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S

c

London
Paris

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

<
l-1

>

c

London
Paris

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

l m
ax

c

London
Paris

a. b. c.

Fig. 1 Size of the largest component S (a), mean inverse 〈`−1〉 (b) and maximal `max (c)
shortest path length as function of the removed nodes concentration c for PTN of London
(red curve) and Paris (green curve). Random removal of PTN nodes/stations.

Here, as in (1), `(i, j) is the shortest path between nodes i and j. Note however,
that opposite to (1) which is ill-defined for the disconnected network, quantity
(7) is well-defined as far as `−1(i, j) = 0 if nodes i, j are disconnected. Therefore
it can be used to trace changes of network behavior under attack.

In Figs. 1 a, b we show the behaviour of S and 〈`−1〉 for the PTN of
London (red curve) and Paris (green curve) as function of the concentration
of removed nodes c, when these nodes were removed at random. Already this
first attempt to model PTN behavior under attack brings about higher fragi-
lity of London PTN to random removal of its nodes/stations: indeed both the
S- and 〈`−1〉-curves manifest faster decay in the case of London PTN. More-
over, the S-curve for the Paris PTN decays almost linearly, that signals that
network clusterization is almost absent and the largest component decreases
only due to the nodes removal. This observation will be further quantified in
the next section. Here, we want to support it by displaying the maximal short-
est path length behaviour, Fig. 1 c. As a matter of fact, `max manifests very
different behaviour for these two PTN. For London PTN, `max grows initially
and then, when a certain threshold is reached (c ∼ 0.14) it abruptly decreases.
Obviously, removing the nodes initially increases the path lengths as deviati-
ons from the original shortest paths need to be taken into account. Further
removing nodes then at some point leads to the breakup of the network into
smaller components on which the paths are naturally limited by the bound-
aries which explains the sudden decrease of their lengths. Such peculiarities in
`max behaviour are almost not observed for Paris PTN, at least for small and
medium values of c.

Note, that plots of Fig. 1 display results of a single sequence of nodes ran-
dom removing. As we have checked by repeating the random attack sequence
[13,15], due to the large PTN size a ’self-averaging’ effect takes place: averagi-
ng over many random attack sequences instances do not significantly modify
the plots presented in Fig. 1. To further analyze the PTN attack vulnerability,
we have made a series of computer simulations removing the PTN constituents
not only at random, but also according to certain prescriptions aimed to single
out the most (or the less-) important nodes. Several more indicators were used
besides the node degree, betweenness centrality (5), and clustering coefficient
(2). Beneath them, we used the number of the next nearest neighbours adja-
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cent to the node, z2, as well as the closeness CC(j), graph CG(j), and stress
centralities, defined as follows [16]:

CC(j) =
1∑

t∈N `(j, t)
, (8)

CG(j) =
1

maxt∈N `(j, t)
, (9)

CS(j) =
∑

s 6=j 6=t∈N
σst(j). (10)

Here, again `(j, t) is the length of a shortest path between the nodes j, t that
belong to the network N , σst is the number of shortest paths between the two
nodes s, t ∈ N , and σst(j) is the number of shortest paths between nodes s
and t that go through the node j. One more attack scenario was prompted to
us by studies of immunization problems on complex networks [17]. It consists
in removing of a randomly chosen neighbor of a randomly chosen node and
is based on the fact, that in this way nodes with a high number of neighbors
will be selected with higher probability. Each of the above described scenarios
(except of the random ones) was realized for the lists prepared for the initial
network or rebuilt by recalculating the order of the remaining nodes after each
step. The last way is known to be usually more effective and leads to slightly
different results suggesting that the network structure changes in the course
of the attack [14,18].
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Fig. 3 Size of the largest component of Paris PTN for different attack scenarios. Notations
the same as in Fig. 3

In Figs. 2, 3 we show the changes in the size of the largest component of
London and Paris PTN at removal of nodes according to all sixteen attack
scenarios described above. More specifically, for the scenarios based on the
recalculated node lists, instead of recalculating the PTN characteristics after
the removal of each individual node, the nodes were removed in groups of
1 % of the initial nodes and the PTN characteristics were recalculated after
the removal of each such group. As it follows from the first glance on the
plots, the most harmful are attacks targeted on the nodes of highest node
degree, highest betweenness and closeness centralities, highest second nearest
neighbours number. We will discuss them in more details in the next section,
completing the picture of node-targeted attacks by that of attacks that target
PTN links.

4 PTN fragility: quantitative analysis

In this section, we are going to discuss in more details reaction of PTN on most
harmful attacks and to compare them with the random attack scenario. To this
end, we will introduce the variable that allows to quantify PTN robustness [19,
20]. Furthermore, we will seek for correlations between the PTN characteristics
prior to the attack and its robustness during attacks of different type. This
agenda will be followed first for the node-targeted attacks (section 4.1) and
then for the link-targeted ones (section 4.2).
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Fig. 4 Size of the largest component S, mean inverse 〈`−1〉 and maximal `max shortest path
length as function of the removed nodes concentration c for PTN of London (red curve) and
Paris (green curve). a, b, c: recalculated highest node degree scenario. d, e, f: recalculated
highest betweenness centrality scenario.

4.1 Node-targeted attacks

As it is clearly seen from Figs. 2, 3, scenarios when the nodes are removed
in the order of their decreasing degree or decreasing betweenness centrality
belong to those that cause most harm to the PTN: decrease of S is fast and
it becomes almost zero at the concentration of removed nodes c ∼ 0.2 ÷ 0.3.
In Fig. 4 we further detail this picture giving plots for the size of the largest
component S, mean inverse 〈`−1〉 and maximal `max shortest path length as
function of the removed nodes concentration c for recalculated highest node
degree (figures a – c) and recalculated highest betweenness centrality (figures
d – f) scenarios. Comparing them with the corresponding plots of Fig. 1,
where an impact of the random nodes removing is shown, one concludes that
the behaviour of both PTN is not as different as it was observed for the
random scenario. Although at the recalculated highest node degree scenario
both S(c) and 〈`−1(c)〉 curves manifest faster decay for London PTN (see
Figs. 4 a, b), the difference is less pronounced in the case of the recalculated
highest betweenness centrality scenario (Figs. 4 d, e). Similarity in both PTN
performance at such attacks follows also from the observation of the maximal
shortest path length `max behaviour. Pronounced peaks in `max(c) first occur
at c ∼ 0.06 and c ∼ 0.1 for London and Paris PTN correspondingly and then
are repeated with certain periodicity giving an ample evidence of clusterization
phenomena in both networks.

The above comparison of PTN attack fragility was to a large extent a
qualitative one. To proceed further with quantitative analysis, one has to in-
troduce a numerical measure of such fragility. In the percolation theory, when
a spanning cluster occurs abruptly at the percolation concentration cperc, the
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latter gives and example of such measure. In the case of real-world networks
of finite size one has rather to speak about the region of concentrations where
an emergent behaviour of fast performance decay occurs. Sometimes the char-
acteristic concentration value based on peculiarity in S, 〈`〉, 〈`−1〉 or `max is
used [14,15]. From now on let us focus on the behaviour of the PTN largest
component. Below, we will use the measure that allows to capture the network
reaction over the whole attack sequence [19]. For the normalized size S(c) of
the largest component as function of concentration c let us define the area A
below the S(c) curve by:

A = 100
∫ 1

0

S(c)dc, (11)

and use this as a measure of the PTN robustness. As follows from the definition
(11), the measure captures the effects on the network over the complete attack
sequence, it is an integral characteristics and is well-defined for a finite-size
network.

Table 2 Fragility measure A, (11), for the PTNs of London and Paris. Columns 2-6 give
the value of A for node-targeted attacks, columns 7-11 give A for link-targeted attacks. See
the text for attack scenario description.

City Node-targeted attacks Link-targeted attacks

RV k ki CB Ci
B RL k(l) ki,(l) C(l)

B Ci,(l)
B

London 29.31 5.45 6.28 8.71 14.17 27.45 20.95 22.85 27.2 27.33
Paris 37.93 10.77 13.12 10.67 14.07 56.04 47.12 51.83 55.93 48.03

In the left part of table 2 we give the value of of A for the highest node
degree and highest betweenness scenarios (performed according to the initial
and to the recalculated node lists, correspondingly) and compare them with
the random scenario. As it follows from the table, almost in all instances Paris
PTN shows better performance (higher value of A) as that of London. Another
conclusion concerns the difference between value of A for the random attack
(RV) and for the attacks that target influential nodes (with high degree k
or high betweenness centrality CB): as it is usual for the complex networks,
they are robust during random removal of their constituents and especially
vulnerable to targeted attacks. A natural question arises whether such result
can be anticipated: can one make some conclusions about PTN fragility prior
to the attack? Indeed, the data of table 1 where information about initial PTN
characteristics is summarized allow at least qualitatively to predict an outcome
of attacks summarized in table 2. To show this, below we shortly recall several
facts known from the complex network theory.

In has been shown [21,22], that a GCC on an uncorrelated infinite network
is present if:

〈k(k − 2)〉 ≥ 0. (12)
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Relation (12) often is referred as the Molloy-Reed criterion. Defining the
Molloy-Reed parameter as the ratio

κ(k) = 〈k2〉/〈k〉, (13)

one may rewrite (12) as:
κ(k) ≥ 2. (14)

As it was illustrated for many real-world PTN [13,15,20], the value of Molloy-
Reed parameter for the unperturbed network may be used also to judge about
network fragility during attack. Typically, the networks with lower κ(k) appear
to be more vulnerable to random and node degree-targeted attacks. This ob-
servation was further supported by monitoring another parameter, defined by
the relation of the mean second neighbours number z2 to the mean neighbours
number z1:3

κ(z) = z2/z1. (15)

It is easy show that κ(k) = κ(z) + 1 for uncorrelated networks. However, as we
have seen from the analysis of section 2, strong correlations are present in the
PTN, therefore one can not expect a simple relation between parameters (14),
(15). Rather, comparison of κ(z) for two given networks will provide additional
information about their relative robustness.

We have calculated values of κ(k) and κ(z) for London and Paris PTN and
give them in the ninth and tenth columns of table 1. Corresponding values for
Paris PTN exceed more than twice those for London bringing a clear signal
about higher vulnerability of London PTN to random failures. This conclusion
has been empirically demonstrated in simulations reported above.

Another evidence about possible higher robustness of Paris PTN with re-
spect to that of London is obtained from comparison of the node-degree distri-
bution exponents γ for both networks (the last column of table 1). The smaller
value of γ for Paris PTN corresponds to the fat-tailed node-degree distribution
P (k). For an infinite network, the GCC is always present if γ < 3 [22] and
small value of γ for a finite-size network signals about its high robustness as
well.

An analysis performed so far concerned attacks, which were targeted on the
network nodes. Before passing to general conclusions, let us analyze reaction
of the PTN under consideration on the link-targeted attacks.

4.2 Link-targeted attacks

Out of different possible scenarios described in section 3, we will concentrate
here on those, which were the most harmful at the node-targeted attacks
removing the highest degree and highest betweenness centrality nodes. Our
goal will be to check how fragile are the PTN to attacks of similar scenarios
with only one but essential modification: what happens when PTN links are

3 Which is by definition equal to the mean node degree 〈k〉.
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removed instead of PTN nodes? However, to proceed we need to generalize
both notions for the case of links. Let us define the degree k(l) of the link
between nodes i and j with degrees ki and kj as [13,20]:

k
(l)
ij = ki + kj − 2. (16)

With such definition, the link degree k(l) = 0 for the graph with two vertices
and a single link, whereas for any link in a connected graph with more than
two vertices the link degree will be at least one, k(l) ≥ 1. The generalization
of betweenness centrality is straightforward:

C(l)
B (i) =

∑

s 6=t∈N

σst(i)
σst

, (17)

where σst is the number of shortest paths between the two nodes s, t ∈ N ,
that belong to the network N , and σst(i) is the number of shortest paths
between nodes s and t that go through the link i (c.f. formula (5) for the node
betweenness centrality). By definition, C(l)

B (i) measures the importance of a
link i with respect to the connectivity between the nodes of the network.
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Fig. 5 Size of the largest component of the London PTN for different attack scenarios.
Opposite to the Figs. 1 – 4, in this figure and in Fig. 6 the links (not the nodes!) were
removed. Therefore, here c means share of removed links.

In Figs. 5, 6 we show results of our simulations of five different attack sce-
narios, when the PTN links were removed at random (RL) or according to the
lists ordered by decreasing link node degrees and link betweenness centrality.
As in the case of node-targeted attacks these lists were prepared either prior to
the attack (corresponding legends in the figures hold the superscript i: ki,(l),
Ci,(l)

B ) or were recalculated each time when 1% of nodes was removed ( k(l),
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Fig. 6 Size of the largest component of the Paris PTN for different link-targeted attack
scenarios as function of concentration of removed links.

C(l)
B ). The figures show dependence of the PTN largest component on the con-

centration of removed links. Let us first note that removal of a link does not
necessarily lead to decrease of S, indeed as we see from the figures S remains
unchanged for small enough value of c, depending on the attack scenario. This
is opposite to the node-targeted attacks, when removal of a node decreased
the size of S at least by relative share of this node. In this respect, the most
particular behaviour is observed for the highest link degree scenario (blue and
green curves in Figs. 5, 6). The value of S first remains practically unchanged
(up to the concentration of removed links c ∼ 0.08 for London PTN and even
c ∼ 0.36 for Paris PTN) and then abruptly decreases almost to zero: behaviour
very similar to that observed at lattice percolation [4]! To further detail an
impact of different scenarios we have calculated the value of the measure A,
introduced in the previous section, see Eq. (11). It is quoted for all five scenar-
ios in the right hand side part of the table 2. As one can see from the table,
almost for all link-targeted scenarios the value of A is almost twice larger for
Paris PTN in comparison with the London one. Another obvious observation
is that different scenarios applied to the same PTN lead to the close values of
A. Returning back to Figs. 5, 6 one can further assure that not only the impact
but also the S(c) curves demonstrate very similar behaviour at random, and
highest link betweenness targeted scenarios.

The above observation that also for the link-targeted attacks London PTN
seems to be more vulnerable as Paris one is based on the numerical simulations
of certain attack scenarios. Again, as in the former subsection one may be
interested if such prediction may be done prior to the attack, on the base of
the information about unperturbed network? In our former analysis [13,20]
we have suggested, that a useful criterion to compare fragilities of PTN at
link-targeted attacks is to compare the mean node degrees 〈k〉 of unperturbed
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networks. Typically, the network with a higher mean node degree is more
robust. Moreover, as we have observed for an instance of fourteen different
PTN of the major cities of the world [13,20], the measure A calculated for each
single network linearly increases with 〈k〉. This demonstrates correlation of the
network stability with the initial ’density’ of network links, without relation to
the correlations in the PTN structure. To some extent this is different to the
criteria discussed in the former subsection for the node-targeted attacks, where
the correlations where considered by analyzing the second moment of the node
degree distribution 〈k2〉 or its z2 neighbourhood, that enter the Molloy-Reed
parameters (13), (15). Comparing 〈k〉 for two unperturbed PTN (table 1) one
can see that its value for Paris PTN exceeds that for London PTN almost in
1.4 times (2.60 for London and 3.73 for Paris, see the table). This observation
may be used as a possible prediction for different attack fragility of these two
PTN.

5 Ideas for conclusions and outlook

– if indeed we have not taken some stations for the Paris network into account
and if we will take them into account in future, we do not expect this
to decrease the PTN stability. Rather we expect that the stability will
increase. These additional nodes will rather correspond to local buses in the
suburb area. On the one hand, such bus lines either give rise to additional
’unimportant’ nodes, that will help to hide hubs at the random scenario.
On the other hand, if such lines will connect also the hubs, this will again
only improve overall robustness.
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