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1. Introduction

The proposals of driven phase transitions [1] in graphene 
[2–5], so called Floquet topological insulators [6], opened the 
road to explore many interesting phenomena in the family of 
two-dimensional materials that support Dirac fermions when 
they are subject to periodically modulated time-dependent 
interactions [7–12]. These photoinduced topological phases 
extended the static results of topological insulators to the 
dynamical regime showing that these topological phases could 
be dynamically generated even if the material showed a trivial 
topological phase in the static scenario. Indeed, within the 

static regime, both experimental and theoretical works have 
shown that the transport properties of topological insulating 
materials present very distinct properties that contrast those of 
conventional two dimensional electron gases 2DEG. An inter-
esting example of those distinct features occurs in the Landau 
level structure of monolayer samples of graphene which, in 
contrast to the semiconductor 2DEG, shows a nonequidistant 
energy spectrum that, in turn, could allow the realization of a 
tunable laser in the Terahertz domain[13–15].

Moreover, the lowest LL in monolayer graphene can only 
be occupied in one of its sublattice degrees of freedom. This 
special behavior of the n  =  0 Landau level (LL) in graphene 
monolayer renders the associated quantum Hall effect par-
ticularly interesting since at the charge neutral Dirac point 
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Abstract
We investigate the charge carrier dynamics in bilayer graphene subject to monochromatic 
laser irradiation within the Landau level quantization regime. Even though the radiation field 
does not lift the energy degeneracy of the lowest Landau levels (LLs), it nevertheless has a 
strong effect on the photoinduced pseudospin polarization response for higher LLs (n � 2). 
Our results show that the photoinduced bandgaps lead to a finite response of the averaged 
pseudospin polarization with nontrivial oscillating behavior. It is shown that the contribution 
from these higher LL transitions turns out to be crucial to achieve an enhanced photoinduced 
polarization in radiated bilayer graphene. The experimental feasibility of our findings is also 
discussed.
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it splits into four sublevels [16] at high magnetic fields (one 
for each valle K, K′ and one per spin state. When considering 
the bilayer graphene scenario [17–23] at low energies, the 
effective charge carriers behave as massive chiral particles in 
absence of a quantizing magnetic field. In addition, it has been 
experimentally shown [24] that it is possible to realize a gate 
induced insulating phase in bilayer graphene. Upon addition 
of a perpendicular magnetic field, the low energy excitations 
show an energy degeneracy at n = 0, 1 which is manifested in 
the transport measurements as additional van Hove singulari-
ties in the density of states [17]. Another experimental work 
shows that for the bilayer case in presence of a quantizing 
magnetic field, a 2π Berry phase is observed [25] which con-
trasts the π Berry phase acquired by Dirac fermions in mono-
layer graphene. One could expect that upon introduction of 
electromagnetic radiation, novel features should be feasible 
to be realized in the dynamical evolution of the effective 
charge carriers at low energies. Indeed these novel features 
have already been explored in irradiated bilayer samples with 
and without trigonal warping effects [17, 26–28]. However, 
the interplay of an applied bias voltage and circularly polar-
ized monochromatic radiation on the pseudospin polarization 
of bilayer graphene and to what extend enhanced polarization 
inversion capabilities can be achieved is still a physics to be 
explored in bilayer graphene and is one of the main focus of 
the present work.

The standard theoretical approach to describe the elec-
tronic properties of these materials rely on either first prin-
ciples (DFT) numerical calculations or the use of a tight 
binding description, either of these gives detailed account of 
a number of the electronic features of both monolayer as well 
as bilayer samples [29]. However, it is well known that many 
phenomena of interest emerge already from the low energy 
physics [30]. In such regime, one can find analytically trac-
table models which, in turn, can shed light on the underlying 
physical processeses allowing for instance, the realization of 
novel transport features. In particular, within this low energy 
regime, most of the relevant physical features of bilayer gra-
phene can be captured via an effective two-band model.

In this work we theoretically analyze the dynamical manip-
ulation of the LL structure of spinless charge carriers in biased 
bilayer graphene (in the Bernal stacking configuration), sub-
ject to a periodically driving radiation field applied perpend-
icular to the sample. In our approach we make use of Floquet’s 
theorem [31–36] to recast the dynamics in an explicitly time-
independent fashion but without the need to resort to the brute 
force numerical solution of the infinite-dimensional Fourier-
mode expansion technique. Our approach has the advantage 
of providing an analytical description of the driven evo lution 
of relevant physical quantities such as the pseudospin polari-
zation. Since we are mostly interested in the leading order 
dynamical effects induced by the radiation field, we shall 
neglect trigonal warping effects that render the energy spec-
trum anisotropic at very low energies (<1 meV) [26]. We will 
also discard any spin-orbit effects (see, for instance, [23] for 
the interplay of spin-orbit effects and quantizing magn etic 

fields). In doing so, our analysis allows us to explicitly address 
each LL in an independent fashion and we show that the pho-
toinduced bandgap depends on the Landau level index such 
that the n � 2 LL quasienergy spectrum gives rise to a level-
dependent bandgap. We then use this in order to infer the 
physical consequences in the dynamical evolution of physical 
quantities.

Although bilayer graphene can also be experimentally real-
ized in the AA stacking, where the two layers are laid on top 
of each other with the corresponding A2 (B2) atoms laying 
on top of the A1 (B1) atoms, this configuration shows a static 
unbiased energy spectrum consisting of two shifted copies of 
the monolayer graphene spectrum [37, 38], with shifted Dirac 
cones separated by an energy of the order of the interlayer 
coupling. Upon introduction of a biased potential U among 
the layers, a static bandgap develops. Therefore, although 
the interlayer coupling is larger than the typical values of the 
bias gate voltage, the dominant physical mechanism for static 
bandgap generation is the bias voltage term. Indeed, in the 
absence of gate voltage the Landau level physics under electro-
magnetic radiation would be that of two decoupled copies of 
monolayer graphene which we have already addressed in [39]. 
This is the reason why we are choosing the AB configura-
tion in order to describe a distinct physical scenario as that of 
mono layer graphene.

Thus, it is shown that in contrast to the single layer sce-
nario, in the AB stacking configuration, the additional layer 
degree of freedom in bilayer graphene offers a richer phys-
ical structure for the pseudospin polarization. We find that 
its amplitude and decaying time can be enhanced via the 
radiation field, within experimentally accessible parameter 
regimes. In addition, the quasienergy spectrum LL anti-
crossings emerging under radiation offer means to explicitly 
address an effective two-level system dynamics that is inde-
pendent of the intensity of the quantizing magnetic field. We 
show that by properly tuning the laser parameters the pho-
toinduced bandgap of the different Landau levels can lead to 
regimes from semi-conducting to metallic transitions with a 
finite to vanishing effective bandgap transition, respectively. 
We find that the photoinduced bandgap opening behavior 
enables a larger effective photoinduced polarization contrib-
ution for the higher order (n � 2) LL states. As we will show 
below, our results on the photoinduced enhancement of the 
polarization effects could also lead to potential applications in 
quantum optics. In this realm, we could suggest using irradi-
ated bilayer graphene in quantum optics for realizing a tun-
able laser taking advantage of the tunable effective bandgap 
that we have obtained.

The paper is organized as follows. In section 2 we present 
the model and summarize the results for the quasienergy spec-
trum and the dynamics of the pseudospin polarization. Next, in 
section 3 we discuss the main results and we give concluding 
remarks, arguing on the possible experimental implementa-
tion of our proposed theoretical setup. Finally, in the appendix 
we summarized some mathematical calculations used during 
the perturbative analysis.
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2. Model

Let us begin by considering the Landau level structure of 
biased bilayer graphene subject to intense circularly polarized 
monochromatic radiation. For definitness, we consider the 
planes of the layers to be the x  −  y  plane, and the perpend-
icular direction to be that of the quantizing static magnetic 
field. We measure the momentum of the particles from the K 
point. Thus, the presence of the magnetic field modifies the 
momentum operator as �p → �p + e�A ≡ π, where the vector 
potential satisfies ∇× �A = �B and we are considering �B = Bẑ. 
Our model for the bilayer graphene is such that the layers are 
arranged according to Bernal A2 − B1 stacking (i.e. atom A2 
from the upper layer lies directly on top of atom B1 in the lower 
layer, see figure 1). In this case, near the K Dirac point at low 
energies and taking into account the time-dependent radiation 
field, we have a 4 × 4 Hamiltonian H(t) = H0 + V(t), where 
H0 is the static part and V(t) describes the light-matter inter-
action. The static contribution is explicitly given by (� = 1)

H0 =




−U ωcâ 0 0
ωcâ† −U γ 0

0 γ U ωcâ
0 0 ωcâ† U


 , (1)

where we have introduced the operators â = (πx − iπy)/ωc 
and â† = (πx + iπy)/ωc where the quantity ωc =

√
2v/�B  

describes the cyclotron frequency for massless Dirac fer-
mions in monolayer graphene, γ  is the interlayer coupling and 
U  >  0 a biasing gate voltage strength. In addition, v ≈ 106 m/s 
is the Fermi velocity of charged particles in monolayer gra-
phene, whereas �−2

B = eB is the magnetic length defined in 
terms of the strength of the quantizing magnetic field B and 
e is the electric charge. Notice that the static Hamiltonian H0 
is written in the basis such that its upper left and lower right 
2 × 2 sub-block matrices describe the lower and upper layers 
with inequivalent atoms labelled as A1, B1 and A2, B2, respec-
tively. In addition, the upper right and lower left 2 × 2 sub-
block matrices describe the interlayer coupling of strength 
γ  (between A1 − B2 sites). Here we are neglecting warping 
effects caused by weaker couplings γ3 among sites A1 − B2 as 
well as a γ4 coupling among A1 − A2 and B1 − B2 sites which 
give rise to electron-hole assymetry. Additional hoppings can 
be neglected in a zero order bilayer Hamiltonian. It is known 

that they can play a role at very low energies  <1 meV. The 
low energy physics is described via an effective two-band 
Hamiltonian to leading order in the interlayer coupling. In 
what follows, we shall concentrate in the range of energies 
|ε| � γ , so in such case the reduced Hamiltonian takes the 
form,

H2 =

(
U Ωc(â†)2

Ωc(â)2 −U

)
, (2)

where Ωc = ω2
c/γ = 2v2

FeB/γ . In this manner, the largest 
energy scale is determined by the interlayer coupling 
parameter γ . Within this regime, the associated Landau 
spectrum in the absence of radiation reads Ens = sEn with 
En =

√
U2 + n(n − 1)Ω2

c , for n �= 0, 1. The corresponding 
eigenstates are explicitly given by

|φns〉 =
(

bs
n|n〉

sb−s
n |n − 2〉

)
, (3)

where n = 2, 3 . . . label the unperturbed Landau levels and 
s = ±1 label the conduction and valence band. We have also 
introduced the coefficients

bs
n =

√
En + sU

2En
. (4)

The degenerate LL corresponding to n = 0, 1 have energy 
E0,1  =  U and read

|φ0〉 =
(
|0〉
0

)
, |φ1〉 =

(
|1〉
0

)
. (5)

We notice that in the presence of the bias voltage the 
electron density of the states can be changed and the associ-
ated bandgap can be tuned accordingly [27, 28]. Yet, we will 
assume a small bias such that the electron density is essen-
tially fixed. Thus, our results will be valid within the low light-
matter coupling strength. Using this approximation, one can 
for instance evaluate the effective effective inter Landau level 
polarization 〈τz〉, where τz  is a 2 × 2 Pauli matrix. Thus, one 
needs to evaluate 〈τz〉ns = 〈φns|τz|φns〉. After some algebraic 
manipulation we get

〈τz〉ns =
sU
En

, (6)

Figure 1. Bernal stacking configuration with dimer states B1 − A2 (red sites) and non-dimer sites B2 (yellow sites) and A1 (blue sites).
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which certainly implies that biasing the system does indeed 
introduces a finite pseudospin polarization via the energy 
bandgap and this manifests as a finite value of the effective 
inter Landau level polarization 〈τz〉ns.

We now deal with the photoinduced effects. In order to 
take into account the light-matter interaction in the model, 
we start from the standard minimal coupling interaction term 
−ev · A(t), which can be introduced, via the Peierls substitu-
tion, in the full 4 × 4 Hamiltonian. Hence, at the Dirac point, 
the effects of the driving field is described in the basis of ec. 
(1) by

V(t) = evF ⊗ σ · A(t), (7)

with  being the 2 × 2 unit matrix, σ = (σx,σy) a vector of 
Pauli matrices and A(t) = A(cosωt, sinωt) the in-plane asso-
ciated radiation field which is related to the electic field via 
E(t) = −∂tA(t), where A = E/ω, with E and ω = 2π/T  
being respectively, the amplitude and frequency of the radia-
tion field, with T being its period. This periodic interaction 
makes the total Hamiltonian

H(t) = H0 + V(t), (8)

periodic in time H(t + T) = H(t), with T = 2π/ω the period 
of oscillation of the driving field. Then, the time-dependent 
contribution reads

V(t) = ξ




0 e−iωt 0 0
eiωt 0 0 0
0 0 0 e−iωt

0 0 eiωt 0


 (9)

where we have introduced the effective light-matter coupling 
strength ξ = eEvF/ω, given in terms of E and ω  the amplitude 
and frequency of the electric field, respectively. We assume 
that the beam radiation spot is large enough compared to the 
lattice spacing so we can ignore any spatial variation. On the 
other hand, we notice that the static Hamiltonian (1) com-
mutes with the operator

Na =

(
Na 0
0 Na −

)
, (10)

where the operator Na is defined as

Na =
(

a†a +
1
2

)
+

σz

2
. (11)

We can then perform a time-dependent unitary transformation 
HF = P†(t)H(t)P(t)− iP†(t)∂tP(t) where P(t) = e−iNaωt , 
given explicitly as

P(t) =
(

e−iNaωt 0
0 e−i(Na− )ωt

)
 (12)

which yields the time-independent Floquet Hamiltonian [31, 
32]

HF = Uτz ⊗ +

(
HF γσ−
γσ+ HF + ω

)
, (13)

where HF  is given by

HF = ωc(a†σ− + aσ+)− Naω + ξσx. (14)

We focus our analysis in the far infrared frequency domain [8], 
where the laser energy is of the order of ω ≈ 10 meV and the 
effective radiation field intensity has the value E ∼ 1 kV m−1, 
for which ξ ≈ 10µeV. Yet, we will show that our results could 
apply for larger electric field intensities E ∼ 0.15 MV m−1 
for which one gets for the coupling constant ξ ≈ 10 meV. For 
frequencies ω  in the Terahertz (ω = 3 THz) one gets ξ ≈ ω. 
This is an order of magnitude smaller than the Landau level 
separation ωc ≈ 116 meV, for B = 10 T, which is a typical 
experimental value at such fields. For larger frequencies and 
stronger magnetic field intensities, the ratio ξ/ωc tends to be 
smaller and our approximation scheme should provide values 
for the physical quantities that could be closer to those exper-
imentally achievable. Thus, we can perform a perturbative 
treatment in the effective coupling parameter λ = ξ/ωc � 1. 
We also notice that for intermediate values of the quantizing 
magnetic field satisfying ξ � ωc, γ we can write down an 
effective two-band Hamiltonian among non-dimer sites; this 
is justified by recalling that quasienergies can be defined 
within the first Brillouin zone −ω/2 < ε < ω/2 and thus the 
effective two-band Hamiltonian approximation can be justi-
fied whenever ω � γ  (see discussion below).

Let us now write down a perturbative Hamiltonian using 
the perturbation parameter of interest λ = ξ/ωc . For this pur-
pose we use the antihermitian operator I− = a†σ− − aσ+, 
and build the 4 × 4 unitary matrix

T =

(
e−λ/2I− 0

0 e−λ/2I−

)
, (15)

which transforms the Floquet Hamiltonian given in equa-
tion (13) as HF → H̃ = T †HFT . Since λ is small we restrict 
our analysis up to first order in the effective perturbation 
parameter λ. Introducing the shifted harmonic oscillator oper-
ators b = a + λ, we get (to leading order in λ) the effective 
Floquet Hamiltonian

H̃ ≈ Uτz ⊗ +

(
H γσ−

γσ+ H + ω

)
, (16)

with H given by

H = ωc

(
b†σ− + bσ+

)
− ωNb − ξNbσz, (17)

that takes into account corrections of order ξ. To get the result 
(16) we have neglected the off-diagonal contributions

∆VOD =
λγ

2

(
0 bσz

b†σz 0

)
− λ2γ

2

(
0 σz

σz 0

)
, (18)

that can be treated by nondegenerate perturbation theory. They 
give corrections of order O(λ2γ2) ≈ ξ2 and O(λ4γ2) ≈ ξ4, 
respectively. Then, they turn out to be less important than the 
last coupling term given in (17) that give corrections of order 
ξ. In addition, we have also neglected the higher order diag-
onal terms

J. Phys.: Condens. Matter 31 (2019) 495703
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∆VD = λω(b + b† − λ)

(
0

0

)
+

λξ

2
(b + b† − 2λ)

(
σz 0
0 σz

)
,

 (19)
that could also be dealt by higher order perturbation theory. 
The contributions (18) and (19) can be relevant in the regime 
of small quantizing static magnetic fields B ≈ 1T , but can 
be discarded in our following discussion since, a posteriori 
shows that these higher order contributions do not qualita-
tively change our main results.

For bilayer graphene some works have reported values 
for γ ≈ 400 meV (see [30] and references therein). Then, 
for a quantizing magnetic field used in experimental setups 
[8] B ∼ 10 T, such that Ωc ≈ 0.25γ we can safely use this 
effective low energy two-band approximation. Thus, for our 
purposes we can work within the effective two-band reduced 
Floquet Hamiltonian (16). First, we find useful to perform 
a unitary transformation HB = R̃HR−1 where R explictly 
reads

R =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 , (20)

that leads to,

HB + ωNb =




U − (nb − 1)ξ 0 0 ωcb†

0 −U + (nb + 1)ξ ωcb 0
0 ωcb† U + nbξ γ

ωcb 0 γ −U − nbξ


 ,

where n̂b = b̂†b̂. The corresponding Floquet eigenstate is 
R|Φ〉 = |Ψ〉, which has the two-component bi-spinor form 
|Ψ〉〉 = (|ψl〉 |ψh〉)T , where the upperscript T denotes trans-
pose and we have separated the lower energy |ψl〉 and |ψh〉 
spinors corresponding to non-dimer and dimer coupling 
among the two layers. Thus, after eliminating the high energy 
spinor component we get the effective low energy two-band 
quasienergy problem H2F|ψ〉 = ε|ψ〉, where the effective 
two-band Floquet Hamiltonian reads now

H2F =

(
U − (n̂b − 1)(ξ + ω) Ωc(b̂†)2

Ωc(b̂)2 −U + (n̂b + 1)(ξ − ω)

)
,

 (21)
with Ωc = 2v2

FeB/γ. The effective Hamiltonian (21) is 
valid whenever the condition γ � Ωc, U, ξ is fulfilled. The 
Hamiltonian given in equation (21) has quasienergies

εns = s
√
[U − (n − 1)ξ]2 +Ω2

cn(n − 1) = sεn, mod ω,
 (22)
with s = ±1, whereas the corresponding eigenstates read as

|ψs
n〉 =

(
f s
n |n〉

sf−s
n |n − 2〉

)
, (23)

where n = 1, 2, . . . label the shifted Landau levels. We also 
have defined the coefficients

f s
n =

√
εn + s[U − (n − 1)ξ]

2εn
, (24)

which, as expected, reduce to the unperturbed expressions 
as ξ → 0. The normalized quasienergies for n = 2 → 5 
are given in figure  2 for the interesting set of parameters 
U/γ = 2ξ/γ = 0.1. The upper left (right) panel shows the 
quasi-energy spectrum as a function of normalized cyclotron 
frequency for the n  =  2 (n  =  3) LL, whereas the lower left 
(right) panel corresponds to n  =  4 (n  =  5). In all panels, the 
dotted black line gives the static unbiased spectrum, the con-
tinuous black (red) curve corresponds to static (driven) biased 
regimes. Interestingly, we notice that the level-dependent 
bandgap is such that one can realize configurations where 
the driven regime is gapless (upper right panel), or the driven 
regime mimics the static biased scenario (lower right panel) 
which indeed shows the tunability of the photodinduced 
bandgap ∆n. However, we emphasize that although the pho-
toinduced bandgap might seem to lead to identical physical 
behaviour of the pseudospin polarization, we will show below 
that this actually is not the case since the interference among 
the driven eigenstates mixes the static eigenstates with dif-
ferent weights. The latter, gives rise to a time-dependent term 
that is directly proportional to the driving strength. Notice 
however that, for higher LL the photoinduced bandgap contin-
uously grows until the restriction ∆n = ω is reached which is 
a consequence of the periodicity of the quasienergy spectrum.

Having dealt with the photoinduced bangdap spectrum we 
can study the radiation field effects on the layer-dependent 
pseudospin polarization τz(t) = 〈Ψ(t)|τz|Ψ(t)〉, and we can 
interpret its fluctuations as an indirect measure of the angular 
momentum exchange among the graphene Dirac fermions 
and the electromagnetic field. That is, it provides informa-
tion about the photodinduced dynamical hopping between 
the upper and lower layer of BLG. In order to gain further 
physical insight, we first show the effects of the radiation field 
by considering the initial state as an eigenstate (3) of the static 
effective two-band Hamiltonian H2|φns〉 = Ens|φns〉, with 
n �= 0, 1. After somewhat lengthy calculations (presented in 
the appendix) we get

〈τz(t, ξ)〉ns =
s∆n

En

(
1 +

(n − 1)ξU
ε2

n

)

+ s

(
Ω2

cn(n − 1)2

Enε2
n

)
ξ cos 2εnt, n � 2,

 

(25)

where ∆n = U − (n − 1)ξ. As expected, in the limit 
ξ → 0, for which ∆n → U  and εn → En, one recovers the 
result (6). The time average of the polarization in one period 

〈τz〉 = 1/T
∫ T

0 〈τz(t, ξ)〉dt  gives

〈τz〉ns =
s∆n

En

(
1 +

(n − 1)ξU
ε2

n

)

+ s

(
Ω2

cn(n − 1)2

Enε2
n

)
ξ sinc 2εnT , n � 2,

 

(26)

with sincx = sin x/x. The pseudospin polarization is plotted in 
figure 3 for the n = 2 → 5 LL states. We can observe that at 
low magnetic fields (Ωc → 0) the effective driven pseudospin 
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polarization effects can be enhanced within the driven sce-
nario when the bias voltage is present. As mentioned before, 
this can be explained by the interplay of the driving field and 
this bias which provides a LL-dependent bandgap favoring 
the interlayer hopping and hence the fluctuation in this phys-
ical quantity. Indeed, for any finite value of the quanti zing 
magnetic field, the unbiased driven polarization shows a LL 

independent behavior which indicates that addressing the 
LLs requires the presence of the driving field for pseudospin 
inversion.

The most general scenario can be considered by writing the 
initial state as a linear superposition of the static eigenstates

|Ψ(0)〉 = c0|φ0〉+ c1|φ1〉+
∑

s=±1

∑
n�2

cns|φns〉 (27)

Figure 2. Landau level spectrum for n  =  2 (upper left), n  =  3 (upper right), n  =  4 (lower left), n  =  5 (lower right) as functions of 
normalized cyclotron energy. The dashed (continuous) black lines represents the static unbiased (biased) spectrum whereas the continuous 
red (light) line corresponds to the biased driven effective low energy spectra. We have set an effective bias U/γ = 0.1 whereas the effective 
coupling is set to ξ/γ = 0.05. For the chosen set of parameters we can get for n  =  3 a biased driven spectrum that mimics the static 
unbiased regime and for n  =  5 a driven biased spectrum indistinguishable from the undriven biased regime (see discussion in the main 
text).

Figure 3. Averaged pseudospin polarization for n  =  2 (upper left), n  =  3 (upper right), n  =  4 (lower left), n  =  5 (lower right) as functions 
of normalized cyclotron energy. Here, the dashed lines represent the static scenario for U = 0.1γ, whereas the black (red) corresponds to 
the unbiased (biased) driven regime for the effective coupling value set to ξ/γ = 0.05 (see discussion in the main text).
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where the expansion coefficients satisfy the normalization 

condition |c0|2 + |c1|2 +
∑

s=±1
∑

n�2 |cns|2 = 1, and we 
have explicitly separated the n = 0, 1 eigenstates since they 
are degenerate in the pseudospin degree of freedom, as was 
discussed previously. Thus, the calculation of the pseudospin 
polarization gives now

τz(t) = |c0|2 + |c1|2 + τ̃z(t) (28)

where the time-dependent contribution reads

τ̃z(t) =
∑

s=±1

∑
n�2

1
ε2

nEn

[
s|cns|2

(
∆n[U∆n

+Ω2
cn(n − 1)] + Ω2

cn(n − 1)2ξ cos 2εnt
)

+ c∗n,−scnsΩc

√
n(n − 1)

{
[Ω2

cn(n − 1) + U∆n]

cos 2εnt − (n − 1)ξ∆n − isεnEn sin 2εnt
}

.
 

(29)

As the n = 0, 1 solutions are still eigenstates of H2F, there 
are not pseudospin oscillations in this subspace. Thus, this 
quanti ty cannot detect any relative phase among these two 
lower LL states but it does so for the higher LL. Then, we 
focus our attention on the oscillatory part τ̃z(t). For clarity of 
the analysis we have assumed for simplicity, but without loss 
of generality, that the expansion coefficients are independent 
of the pseudospin degree of freedom cns = cn/

√
2 . We notice 

that under this assumption, the first and last terms in equa-
tion (29) vanish which further simplifies the resulting expres-
sion for the polarization. Then the n � 2 LL contributions to 
the pseudospin polarization now have the form

τ̃z(t) =
∑
n�2

|cn|2Ωc
√

n(n − 1)
2En

{
cos 2εnt − (n − 1)ξ∆n(1 − cos 2εnt)

ε2
n

}
.

 (30)
Within this approximated scenario we notice that the selection 
of real expansion coefficients allows us a more transparent 
theoretical description of the pseudospin polarization effects. 
Clearly by selecting c0 = c1 = 0 implies that only pseudospin 
oscillations are considered. Upon averaging we get the result

〈τ̃z〉 =
∑
n�2

|cn|2Ωc
√

n(n − 1)
2En

[
sinc

(4πεn

ω

)
− (n − 1)ξ∆n[1 − sinc(4πεn/ω)]

ε2
n

]
.

 (31)
We have previously considered a coherent state superposi-

tion for which |cn|2 = e−|α|2 |α|2n/n!, and show that inter-

esting dynamical effects might arise in monolayer graphene 
LL [39]. Within the formulation of quantum optics, the 
parameter 〈n〉 = |α|2 gives a measure of the average occupa-
tion of the coherent state. In order to determine the radiation 
field effects in a coherent state superposition, we select again 
as initial configuration a coherent state and in figure 4 we 
show 〈τz〉 as a function of Ωc/γ  for different cases. The gen-
eral outcome is that for both biased and unbiased regimes, 
the pseudo spin polarization amplitude can be enhanced by 
means of the radiation field, and it takes typically longer for 
the driven pseudospin oscillation to decay. This shows that 
driving the system by monochromatic radiation affords a 
better control mechanism to address the pseudospin degree 
of freedom as compared to the role of the bias gate voltage 
allowing for longer and more pronounced pseudospin polar-
ization effects.

Figure 4. Averaged pseudospin polarization for the coherent state configuration. The black continuous line represents the static 
configuration whereas the red (blue) dashed line corresponds to ξ = 0.01γ (ξ = 0.05γ). The upper left (right) panel corresponds to the 
unbiased case for a coherent state parameter α = 1 (α = 5), whereas the lower left (right) panel corresponds to the biased U = 0.1γ 
scenario for α = 1 (α = 5).
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3. Discussion and concluding remarks

We have analyzed the dynamical modulation of the Landau 
level structure of biased bilayer graphene subject to circularly 
polarized terahertz radiation. By means of a perturbative semi-
analytical treatment we found that the most salient feature of 
the photoinduced modulation is to introduce a level depen-
dent bandgap that provides an additional control param eter to 
modulate the electronic properties of the low energy particles 
present in the bilayer configuration. Nontrivial behavior of the 
pseudospin degree of freedom can be observed via the oscil-
lations in the associated polarization dynamics. We show that 
the n � 2 LL transitions are crucial to obtain a finite polar-
ization for an initially prepared coherent state. In this manner, 
driving the system by monochromatic radiation could afford 
a better control mechanism to manipulate the pseudospin 
degree of freedom as compared to the sole application of the 
static bias gate voltage. In addition, we have also shown that 
in the driven scenario longer and more pronounced pseudo-
spin polarization effects can be realized. Indeed, this is a novel 
feature of the driven scenario since the main new physical fea-
tures are absent within the subspace spanned by the degenerate 
n = 0, 1 LL states. We would expect that the reported pho-
toinduced gap modulation and pseudospin oscillations could 
be detected through the reemitted dipolar radiation from the 
oscillating charge carriers as it was proposed in [13] or with 
an appropriate modification of the experimental result reported 
recently [40] using a pump-probe femtosecond time- and 
angle-resolved photoemission spectroscopy (tr-ARPES) tech-
nique. In such experiment, a laser source is used to both map 
the energies of the excited states as well as follow the associ-
ated momentum-resolved population dynamics and serves to 
capture the transient population decay processes. The setup 
allow them to reach the femtosecond time scales associated 
to In/Si(1 1 1). We emphasize that the frequencies of interest 
in our model would lie in the near infrared region. Therefore, 
we could expect the detection scheme of our proposal to be 
in a much lower frequency scale associated to picosecond 
processes as has already been experimentally implemented 
recently in [41].

Since in this work we have considered pristine graphene 
samples, we would like to make a final remark on the role 
of defects in our results. Experimental evidence shows that 
defects might appear during the synthesis process of the 
sample which, at the nanoscale, might lead to interesting new 
phenomena since they could be exploited to generate novel, 
innovative and useful materials and devices [42]. For instance, 
these defects have been observed in situ via transmission elec-
tron microscopy [43]. The authors of [44], have reported that 
point defects lead to notable paramagnetism but no magnetic 
ordering could be detected down to liquid helium temper-
atures, whereas the authors of [41] address the role of topo-
logical defects in photoinduced phase transitions. They show 
that long-range order is inhibited and is only restored when 
the defects annihilate. They also argue that their results would 
provide a framework for understanding other photoinduced 
phase transitions by identifying the generation of defects as 
a governing mechanism. Thus, considering defects in our 
setup should lead to further interesting results that would be 

addressed in future research. A very interesting review on 
the role of structural defects is given in [45]. In addition, we 
would expect that our results could also pave the road to dis-
cussing photoinduced Landau levels in graphene heterostruc-
tures with other materials such as black phosphorus[46–48] 
which would be addressed elsewhere. In summary, we have 
shown that photoinduced enhancement of the pseudospin 
polarization in AB bilayer graphene can be achieved within 
experimentally accessible parameter regimes. We expect that 
our results could lead to further interesting physical scenarios 
in other two-dimensional materials as black phosphorus or 
transition metal dichalcogenides, among others.
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Appendix. Derivation of the pseudospin 
polarization

Here we present some algebraic steps leading to the expres-
sions of the photoinduced polarization effects. First, we give 
the results for an initially prepared eigenstate of the static 
effective two-band Hamiltonian

|φnτ 〉 =
(

bτ
n |n〉
τb−τ

n |n − 2〉

)
,

 
(A.1)

where we have defined the coefficients

bτn =

(
En + τU

2En

)1/2

,
 

(A.2)

whereas, the approximate Floquet states are given as

|ψms〉 =
(

f s
m|m〉

sf−s
m |m − 2〉

)
,

 
(A.3)

with corresponding coefficients

f s
m =

(
εm + s∆m

2εm

)1/2

.
 

(A.4)

Then the polarization calculation is as follows

〈τz(t)〉nτ = 〈φnτ |eiH2Ftτze−iH2Ft|φnτ 〉, 
(A.5)

=
∑
ss′

∑
mm′

〈φnτ ||ψm′s′〉〈ψm′s′ |τz|ψms〉〈ψms||φnτ 〉e−(εms−εm′s)t,
 (A.6)

=
∑
ss′

∑
mm′

〈φnτ ||ψms′〉〈ψms||φnτ 〉
(

f s′
m f s

m − f−s
m f−s′

m ss′
)

× e−i(s−s′)εmtδmnδm′n, 
(A.7)
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=
∑

s=±τ

[(
bτn f s

n + τsb−τ
n f−s

n

)2 [
( f s

n )
2 − ( f−s

n )2]+ 2
(
bτ

n f−s
n − τsb−τ

n f s
n

)

×
(

f s
n bτn + sτ f−s

n b−τ
n

) (
f s
n f−s

n

)
e−2isεnt] .

 
(A.8)

Using the definitions (A.2) and (A.4), we get

〈τz(t)〉nτ =
τ∆n

εnEn

(
U∆n

εn
+

Ω2
cn(n − 1)

En

)

+
τΩ2

cn(n − 1)2ξ

Enε2
n

cos 2εnt.
 

(A.9)

For the general scenario, the initial state is given as a super-
position of the static Hamiltonian eigenstates

|Ψ(0)〉 = c0|φ0〉+ c1|φ1〉+
∑

ns

cns|φns〉,
 

(A.10)

where, as it is discussed in the main text, we have isolated 
the n = 0, 1 LLs which are occupied in a single subspace of 
the pseudospin degree of freedom. In this expressions, the 
expansion coefficients satisfy the normalization condition 
|c0|2 + |c1|2 +

∑
ns |cns|2 = 1. Now, taking into account that the 

n = 0, 1 LL remain as eigenstates of the Floquet Hamiltonian 
H2F, we get for the pseudospin polarization dynamics 
〈τz(t)〉 = 〈Ψ(0)|eiH2Ftτze−iH2Ft|Ψ(0)〉 = |c0|2 + |c1|2 + 〈τ̃z(t)〉 . 
The time-dependent part is a bit lengthy but can be explicitly 
worked out as follows

〈τ̃z(t)〉 =
∑
nτ

∑
n′τ ′

c∗nτcn′τ ′〈φnτ |eiH2Ftτze−iH2Ft|φn′τ ′〉, (A.11)

=
∑
nτ

∑
n′τ ′

c∗nτcn′τ ′

∑
ss′

∑
mm′

〈φnτ ||ψm′s′〉〈ψm′s′ |τz|ψms〉〈ψms||φn′τ ′〉e−(εms−εm′s)t,

 

(A.12)

=
∑
nτ

∑
n′τ ′

c∗nτcn′τ ′

∑
ss′

∑
mm′

〈φnτ ||ψms′〉〈ψms||φn′τ ′〉
(

f s′
m f s

m − f−s′
m f−s

m ss′
)

e−i(s−s′)εmtδmnδm′n,

 

(A.13)

=
∑

n

∑
ττ ′

c∗nτcnτ ′

∑
s=±τ ′

{
〈φnτ ||ψns〉〈ψns||φnτ ′〉

[
( f s

n )
2 − ( f−s

n )2]+ 2〈φnτ ||ψn,−s〉〈ψns||φnτ ′〉
(

f s
n f−s

n

)
e−2isεnt}

 

(A.14)

=
∑
nτ

|cnτ |2
{{

|〈φnτ ||ψnτ 〉|2 − |〈φnτ ||ψn,−τ 〉|2
} [

( f τn )
2 − ( f−τ

n )2]+ 4f τn f−τ
n Re

{
〈φnτ ||ψn,−τ 〉〈ψn,τ ||φnτ 〉e−2iτεnt}}

−
∑
nτ

c∗nτcn,−τ {〈φnτ ||ψn,−τ 〉〈ψn,−τ ||φn,−τ 〉 − 〈φnτ ||ψnτ 〉〈ψnτ ||φn,−τ 〉}
[
( f τn )

2 − ( f−τ
n )2]

+
∑
nτ

c∗nτcn,−τ4f τn f−τ
n Re

{
〈φnτ ||ψnτ 〉〈ψn,−τ ||φnτ 〉e2iτεnt} .

 

(A.15)

Up to this point, no assumption has been made about the 
expansion coefficients. To further simplify the previous 
expression we consider the experimentally relevant situation 
for which these parameters are pseudospin-independent, i.e. 
cnτ = cn/

√
2. Within this regime, upon substitution of the dot 

products, we get the compact expression

〈τ̃z(t)〉 =
∑

n

|c2
n|
∑
τ

[
|〈φnτ ||ψnτ 〉|2 − |〈φnτ ||ψn,−τ 〉|2

− (〈φnτ ||ψn,−τ 〉〈ψn,−τ ||φn,−τ 〉 − 〈φnτ |

|ψnτ 〉〈ψnτ ||φn,−τ 〉)
] [

( f τn )
2 − ( f−τ

n )2]

+ 4
∑

n

|c2
n|
∑
τ

f τn f−τ
n Re

{
〈φnτ ||ψn,−τ 〉〈ψn,τ ||φnτ 〉e−2iτεnt} .

 (A.16)

Upon substitution of the matrix elements 〈φn,τ ||ψn′,τ ′〉, and 
using equations (A.2) and (A.4) we arrive at the result given in 
equation (29). It is important to mention that in order to obtain 
the reported results we are assuming that, to leading order in 
the parameter λ = ξ/ωc , the relation 〈m||n〉 = δnm among 
the original number operator eigenstates a†a|n〉 = n|n〉 and 
the shifted ones b†b|m〉 = m|m〉 is valid. Indeed, we expect 
that the scenario described in this work should hold in typical 
experimental setups in which the higher order corrections are 
negligible whenever ξ � Ωc � γ .
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