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Abstract – We examine the optical properties of two different configurations of a cylindrical
device made from a hyperbolic metamaterial with optical axis defined by circular and radial
director fields. The hyperbolic metamaterial is a uniaxial anisotropic medium for which the ratio
between ordinary and extraordinary permittivities is negative, leading to a particular effective
geometry with two timelike coordinates in the metric (Kleinian signature). By using differential
geometry tools we are able to perform a comparison between a simple geometrical optics treatment
and the wave formalism that shows the concentration of light along the cylinder axis for the case
of the circular field configuration, whatever the injection conditions are.
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Concentration of light has become a major issue in a
large number of applications ranging from solar energy
harvesting to optical sensing. Different ways have been
explored in order to focus light in the most efficient way.
Historically, the first attempts were made by using lenses
of dielectric matter, but for a long time diffraction phe-
nomena forbid beam sizes below half of a wavelength.
Plasmonic structures [1] and optical metamaterials [2] are
probably the best candidates to overcome the usual phys-
ical limits. These latter are artificial media that can be
used in superlenses working beyond the diffraction limit.
In this letter, we examine the possibility to focus light with
a cylindric device made of a nematic liquid crystal which
optically behaves as an anisotropic metamaterial. Perfor-
mances of the device are discussed both in the geometrical
optics limit and in the framework of wave theory.

In uniaxial anisotropic media, light propagation is de-
scribed in terms of two indices, no the ordinary index
and ne, the extraordinary index. For instance, nematic
liquid crystals are made of cigar-shaped molecules ar-
ranged in such a way that could exhibit properties of uni-
axial anisotropic media. At high temperatures, entropy

maximization is realized by an isotropic (liquid) phase
where all molecule orientations are equally likely, but when
the temperature decreases, several phase transitions may
occur. Among them, the appearance of a nematic phase
with an orientational order is characterized by a specific
direction measured by the director, n, (a unit vector) along
which the molecules are aligned on average [3]. The cor-
responding phase transition may be of second order or
first order, depending in particular on space dimension
and intermolecular interactions, and may even be, in low
dimension, a topological phase transition governed by the
presence of topological defects [4]. In what concerns light
propagation in the nematic phase, one has to distinguish
between an ordinary ray, which propagates in such a way
that the electric field of the electromagnetic wave remains
perpendicular to the director n, and an extraordinary ray,
for which E has a nonvanishing component along n. In
the latter, the Poynting vector S = E×H differs in direc-
tion from that of the wave vector k. In this case, energy
velocity is thus governed by a ray index

N2
r = n2

o cos2 β + n2
e sin2 β (1)
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with β = (n̂,S) and differs from the phase velocity, gov-
erned by another index, the phase index

N2
p =

n2
on

2
e

n2
e cos2 γ + n2

o sin2 γ
(2)

with γ = (n̂,k) [5]. Fermat’s principle states that the
energy propagation for the extraordinary ray obeys the
variational prescription

δ

∫
Nr(r)dl = 0, (3)

where dl is the element of arclength along the light path.
We now analyze the light path in a hyperbolic liq-

uid crystal metamaterial (HLCM) by Fermat’s principle.
From the optical point of view, this is a uniaxial medium
and the ordinary and extraordinary indices are given in
terms of the permittivities, n2

o = ε⊥ and n2
e = ε||. The ma-

terial is made of an ordinary nematic liquid crystal which
includes an admixture of metallic nanorods [6], which align
along the director field n of the nematic phase, resulting
in a negative permittivity ε|| < 0 along that direction.
As shown in [7], a model of negative index material can-
not, strictly speaking, circumvent dispersion phenomena
and losses. The main consequence is that a concentrator
designed from metamaterials should support evanescent
waves and, therefore, in order to be efficient, the length of
the device has to be short enough to avoid that the losses
cancel the field. However, losses due to metallic plasmonic
components might be offset by using gain media as pointed
in [8,9] (highly doped oxides with lower dissipation levels
have also been considered [10,11]). The low-loss limit for
metamaterials has also been recently reached by working
within the terahertz waveband [12]. Hence, as customary
in transformational optics (for example in the design of
hyperlenses or invisibility cloaks [13–15]), we will consider
metamaterials in homogenization regime for which losses
have been reduced so that one may focus on kinematic
aspects of light propagation.

We study two different types of HLCM configurations.
First we consider the director field as n̂ = φ̂ (circular
director field, a hat is used to denote unit vectors), and
then we consider the configuration n̂ = r̂ (radial director
field), see fig. 1.

Since the ray path is parametrized by the arc length l,
the tangent unit vector along the path is thus t = dr

dl , and
the angle β which measures the tangent orientation with
respect to the director is given by

cos β = t · n. (4)

In cylindrical coordinates, r(l) = rr̂ + zẑ, thus t = ṙr̂ +
rφ̇φ̂ + żẑ where ẋ = dx

dl , and the normalization constraint
follows |t|2 = ṙ2 + r2φ̇2 + ż2 = 1. In the configuration (a),
we thus have cos β = rφ̇ from (4), and sin2 β = ṙ2 + ż2

from the normalization constraint. The ray index (1) in
configuration (a) is then

N2
r = ε⊥r2φ̇2 − |ε|||(ṙ2 + ż2). (5)

HLCM

Glass

(a) (b)

HLCM

Glass

Fig. 1: (Colour online) Two different cylindrical configurations
of HLCM (according to the director field arrangement) covered
with a reflective material. (a) Director field configuration for
HLCM with optical axis as n̂ = φ̂ (circular director field). (b)
Director configurations for HLCM with optical axis as n̂ = r̂
(radial director field).

In a similar manner, the ray index in configuration (b) is
given by

N2
r = ε⊥ṙ2 − |ε|||(r2φ̇2 + ż2). (6)

Rescaling the coordinates according to ρ = r
√
|ε‖|, ζ =

z
√
|ε‖|, the elementary optical path ds2 = N2

r dl2 reads as

ds2 = N2
r dl2 = −dρ2 + α2ρ2dφ2 − dζ2, (7)

for configuration (a) and

ds2 = N2
r dl2 = α2dρ2 − ρ2dφ2 − dζ2, (8)

for configuration (b), where α2 = ε⊥
|ε||| . In both cases,

the optical path can be elegantly reinterpreted in terms of
non-Euclidean geometry: following a pioneering idea by
Gordon [16], light propagation inside a refractive medium
occurs in a similar fashion to light propagation on a Rie-
mannian manifold, the metric tensor of which is obtained
from [17]

ds2 = gijdxidxj (9)

(here we used Einstein’s summation convention on re-
peated indices). As will be illustrated in what follows,
differential geometry is extremely powerful when dealing
with calculations of light trajectories or with how to gen-
eralize the wave equation.

We now consider the geometrical optics limit and start
analyzing the path followed by light in the HLCM device
with a purely circular director field (see fig. 1(a)), which
is obtained from planar anchoring of the molecules at the
boundaries. From the optical path (7), the metric tensor
is given in that case by

gij =

⎛
⎝−1 0 0

0 α2ρ2 0
0 0 −1

⎞
⎠ . (10)

Constants of motion are given by the Killing vectors,
which correspond the cyclic variables of the metric. A
quick examination of (10) reveals two Killing vectors,
(∂φ)i = (0, 1, 0)T and (∂ζ)i = (0, 0, 1)T (here T denotes
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the transposition operation used to represent column vec-
tors), associated with the covectors:

(∂φ)i = gij(∂φ)j = (0, α2ρ2, 0), (11)
(∂ζ)i = gij(∂ζ)j = (0, 0,−1). (12)

These vectors obey the Killing equations, which give the
constants of motion:

(∂φ)i
dxi

dλ
= C̃, (13)

(∂ζ)i
dxi

dλ
= A. (14)

Here λ is an affine parameter such that ds2 = Bdλ2 with
B > 0 in order to preserve the causal regions in terms of
the two variables. Denoting by x′ = dx

dλ , one gets

ζ ′ = A, (15)

ρ2φ′ =
C̃

α2
= C. (16)

In the remainder, propagation along increasing values of
z will be considered, so that A > 0. A third constant
of motion is obtained from energy conservation. The line
element gives

−(ρ′)2 + α2ρ2(φ′)2 − (ζ ′)2 = B. (17)

Note that eq. (17) can also be deduced from the eikonal
equation kμkμ = 0. Substituting (15), (16) gives

ρ′2

2
− α2C2

2ρ2
=

−(A2 + B)
2

= E. (18)

It must be remarked that the particular form of that
relation requires that the energy parameter E ≤ 0. The
resolution of that equation leads to

ρdρ√
ρ2

M − ρ2
= ±Kdζ, (19)

where ρM = α|C|√
2|E|

and K =
√

2|E|
A > 0. Denoting by

ρ0 the radius at which the ray is injected (ζ = 0), one
finds the two families of solutions. The first family corre-
sponds to the positive sign, which corresponds to rays of
increasing radius:

ρ(ζ) =
√

ρ2
M − ((ρ2

M − ρ2
0)1/2 − Kζ)2. (20)

Hence, orbits are confined with maximum radius ρM .
We also see that a given ray reaches ρM for zM =
(ρ2

M−ρ2
0)

1/2√
|ε‖|K

. For moderate injection angles, the light ray

is not able to reach the outer metallic layer before falling
down onto the defect core: in other words, rays undergo
a total internal reflection for any frequency preserving the
hyperbolic feature of the nematic phase. For large injec-
tion angles, light rays may reach the outer metallic layer

Fig. 2: (Colour online) Projection of the trajectories onto the
x-y plane with ρ in units of ρM , for a few values of α.

but will be reflected back inside the HLCM to finally con-
verge on the core.

The second family of solutions in (9) is obtained when
considering the negative sign, which corresponds to rays
of decreasing radius:

ρ(ζ) =
√

ρ2
M − ((ρ2

M − ρ2
0)1/2 + Kζ)2. (21)

Here, the ray can decrease down to the defect core and
hence be guided along the axis of the cylinder. When
the light rays get closer to the defect core the angular
momentum term in (9) gets very large and hence, the light
rays make more turns, see figs. 2 and 3.

By combining eq. (20) with eq. (16), we obtain for the
first family of solutions,

φ(ζ) =
1
α

tanh−1

(
Kζ − (ρ2

M − ρ2
0)

1/2

ρM

)
(22)

and, by substituting eq. (21) into eq. (16), we get

φ(ζ) =
1
α

tanh−1

(
Kζ + (ρ2

M − ρ2
0)

1/2

ρM

)
(23)

for the second family of solutions.
By manipulating eq. (20) and eq. (22), we find ρ = ρ(φ)

as being the confined Poinsot spiral:

ρ(φ) =
ρM

cosh αφ
. (24)

By combining eq. (21) and eq. (23) we obtain the same
eq. (24). With eq. (24) we can get the confined trajec-
tories for light traveling in a plane z = const. We see
that the smaller the value of α, the stronger the spiral-
ing behavior as 1/α can be understood as the “spiraling
strength” (vorticity) of the defect [18–20]. The same ef-
fect can be visualized in the three-dimensional trajectories
obtained from the parametric equations ρ(ζ) and φ(ζ), see
fig. 3. For large values of α, for example α = 20, the rays
travel in nearly straight lines radially toward the defect
core, see fig. 2.

We now examine the path followed by light in the
HLCM device with a purely radial director field (see
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(a)

(b)

(c)

Fig. 3: (Colour online) Light trajectories in three dimensions
for ρM = 1, ρ0 = 0.8, K = 0.64 and α = 0.1, 0.2; the figures
on the left (right) side refer to α = 0.1 (α = 0.2). (a) Light
path for rays of increasing radius starting at ρ0 = 0.8. (b)
Light path for rays of decreasing radius starting at ρ0 = 0.8.
(c) Light path for rays starting at ρ0 = ρM .

fig. 1(b)), which is obtained from homeotropic anchoring
of the molecules at the boundaries. The metric tensor is
given by

gij =

⎛
⎝ α2 0 0

0 −ρ2 0
0 0 −1

⎞
⎠ . (25)

The two Killing vectors are the same as in the circular
case, (∂φ)i = (0, 1, 0)T and (∂ζ)i = (0, 0, 1)T, associated
with the covectors:

(∂φ)i = gij(∂φ)j = (0,−ρ2, 0), (26)
(∂ζ)i = gij(∂ζ)j = (0, 0,−1). (27)

The Killing equations are straightforwardly obtained as:

ζ ′ = A, (28)
ρ2φ′ = C. (29)

Energy conservation gives

ρ′2

2
− C2

2α2ρ2
=

B + A2

2α2
= E. (30)

The constant E in eq. (30) is positive, then the solution is
not exactly the same as eq. (18) where E is negative. We
can also see that, since the first term in the left-hand side
of eq. (30) cannot be zero, there is no turning point for
the light trajectories (the trajectories are unbounded). In-
deed, contrary to the first HLCM configuration in fig. 1(a),
light is not confined; if the ray starts with increasing ρ at
ρ0 it will never decrease to the defect core, unless it is
reflected by an outer layer. These arguments hold when
looking at the parametric equation ρ(φ) ∼ 1

sinh αφ , which
is another case of Poinsot’s spiral, but not of a confined
type now.

Hence, the first circular configuration should be favored
to concentrate light. It must be highlighted that, in prac-
tice, such configuration also has the asset of preventing in-
stabilities such as the escape in third dimension [21] that
might break the director field and hence the guiding ef-
fects.

To support the concentration effect, we are now ex-
amining the structure of the optical modes that propa-
gate in the device (HLCM with circular director field, see
fig. 1(a)). In the scalar wave approximation, the complex
amplitude Φ of the wave is governed by the generalized
form of the d’Alembert equation

∇i∇iΦ − 1
c2

∂2Φ
∂t2

= 0, (31)

where ∇i∇i is the Laplace-Beltrami operator, whose ac-
tion on the wave function Φ is given by

∇i∇iΦ =
1√
|g|

∂i

(√
|g|gij∂jΦ

)
. (32)

In the case of harmonic time dependence of the form
Φ(ρ, φ, ζ, t) = ψ(ρ, φ, ζ) e−iωt, Helmholtz equation is ob-
tained from (32) as

−1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
α2ρ2

∂2ψ

∂φ2
− ∂2ψ

∂ζ2
+

ω2

c2
ψ = 0, (33)

where ω is the angular frequency of the light. Using the
ansatz ψ(ρ, φ, ζ) = F
,kζ

(ρ)e±i
φe±ikζζ leads to the equa-
tion

ρ2 d2F
,kζ

dρ2
+ ρ

dF
,kζ

dρ
−

[(
ω2

c2
+ k2

ζ

)
ρ2 − �2

α2

]
F
,kζ

= 0.

(34)
Equation (34) is the modified Bessel differential equa-

tion of imaginary order i�/α, with solutions [22,23]

F
,kζ
(ρ) = e
Ĩ
/α (ω̄ρ) + f
K̃
/α (ω̄ρ) , (35)

where ω̄ =
√

k2
ζ + ω2/c2 and e
, f
 are constants of in-

tegration. The functions Ĩ
/α = ReIi
/α and K̃
/α =
Ki
/α are linearly independent solutions of eq. (34), with
Ii
/α,Ki
/α being the modified Bessel functions of first
and second kind, respectively [23]. Note that, in an
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ordinary defect-free Euclidean space, the radial solu-
tion of Helmholtz equation would be a linear combina-
tion of J
(ρ

√
ω2/c2 − k2

ζ) and Y
(ρ
√

ω2/c2 − k2
ζ) instead

of �(Ii
/α(ρ
√

ω2/c2 + k2
ζ)) and Ki
/α(ρ

√
ω2/c2 + k2

ζ),
which is the case here. We can see the effect in the solution
of the metamaterial character of the metric via: i) the in-
troduction of imaginary order Bessel functions and ii) the
change of Bessel to modified Bessel functions and the role
of the defect amplitude through the appearance of α in
the imaginary order of the modified Bessel functions.

The modified Bessel functions Ĩ
/α, K̃
/α oscillate
rapidly near the origin, as one can see from their behaviors
as ρ → 0+ [22,23],

Ĩ
/α(ω̄ρ) =
(

sinh(π�/α)
π�/α

)1/2

cos
[

�

α
ln

( ω̄ρ

2

)
− γ
/α

]
+ O(ω̄2ρ2), (36)

K̃
/α(ω̄ρ) = −
(

πα/�

sinh(π�/α)

)1/2

sin
[

�

α
ln

( ω̄ρ

2

)
− γ
/α

]
+ O(ω̄2ρ2), (37)

where γ
/α is a constant defined as γ
/α ≡ arg Γ(1+i�/α),
with Γ being the Gamma function. The rapid oscillations
are due to the logarithmic argument of the trigonomet-
ric functions. Furthermore, for a fixed �, the smaller the
value of α is, the stronger the oscillations become (reduc-
ing the value of α shrinks the period of the trigonometric
functions). This behavior can be visualized in fig. 4.

Despite the similarities between Ĩ
/α and K̃
/α near the
origin, their asymptotic behavior is exponential [22,23],

Ĩ
/α(ω̄ρ) =
(

1
2πω̄ρ

)1/2

eω̄ρ

[
1 + O

(
1

ω̄ρ

)]
, (38)

K̃
/α(ω̄ρ) =
(

π

2ω̄ρ

)1/2

e−ω̄ρ

[
1 + O

(
1

ω̄ρ

)]
. (39)

Hence, the first solution can be dismissed as it diverges
at large distances from the axis, which means that e
 = 0.
As expected from the geometrical optics limits, the field
concentrates along the axis of the device.

For a given z = const plane, the intensity distribution
for the propagating fields may be represented in terms
of |K̃
/α(ω̄ρ)|2, see fig. 5. We see that the bigger the
value of α for a fixed �, the brighter the rings (fields of
high amplitudes). Besides, the bigger the value of ω̄, the
smaller the light rings (the more concentrated fields are
the ones near the origin).

We want to emphasize how powerful the HLCM (circu-
lar field configuration) is for designing optical concentra-
tors. Both geometrical optics and wave optics treatments
show that light is indeed concentrated while propagating
in the HLCM medium. No matter how the rays are in-
jected, they will fall down onto the defect core with or
without being reflected in the outer layer of the cylindri-
cal concentrator. In practice, it is shown that a given

(a)

(b)

Fig. 4: (Colour online) The corresponding radial wave ampli-
tudes K̃ for fixed � = 1, α = 0.17, 0.5 and ω̄ = 1, 2. (a) for
α = 0.5 and (b) for α = 0.17. The solid and dashed lines refer
to ω̄ = 1 and ω̄ = 2, respectively. The smaller the value of
α, the more the fields oscillate near the origin. At large dis-
tances (logarithmic scale on the x-axis here) the behavior is
exponential and it does not depend on �/α.

Fig. 5: (Colour online) |K̃|2 intensity profiles, representing the
transverse field distributions. All plots are in the same scale
and with � = 1. The ones on the left (right) correspond to ω̄ =
0.67 (ω̄ = 1). The top (bottom) ones correspond to α = 0.90
(α = 0.83).

combination of materials forming metamaterials will keep
hyperbolic properties only within a range of frequency de-
fined in terms of the plasma frequency of the constituent
materials [24,25].

Finally, we remark that in this work we considered a
real, albeit negative, refractive index. In fact, in order to
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have a negative index, the permittivity must be complex,
which is provided by the metamaterial’s metallic compo-
nents. This implies a complex refractive index, whose
imaginary part we assumed to be small. The main effect
of the imaginary part of the refractive index in the device
proposed here, is to damp the propagating beam, there-
fore decreasing its efficiency as a power transmitter but not
impairing its concentrator feature. Improvements of meta-
materials in order to minimize undesirable effects such as
Ohmic losses, reflection and dispersion are presently the
subject of very active research worldwide. Use of low-
loss components, geometric tailoring, incorporation of gain
media and directional scattering are some of the strategies
pursued.
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