Journal article Open Access
Gunnar Suchaneck;
Nikolay Kalanda;
Evgenij Artsiukh;
Gerald Gerlach
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-09-08</subfield> </datafield> <controlfield tag="005">20200224164253.0</controlfield> <controlfield tag="001">3665613</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:3665613</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>This work reviews some fundamental issues that are relevant for the fabrication of stable‐phase strontium ferromolybdate thin films. The main challenges for strontium ferromolybdate thin film deposition arise from the sensitivity of the material&#39;s magnetic properties to point defect formation: i) Antisite defect formation and oxygen nonstoichiometry should be avoided by precise composition control during film manufacturing; ii) a highly ordered state of the correct phase and B‐site cation valence will be obtained only in a very narrow window of growth conditions; iii) to avoid additional antisite disorder with decreasing synthesis temperature, the effective temperature at the film surface should be increased by an energy flux to the growing film surface. Since thin film deposition is nonequilibrium in nature, the review starts with the consideration of equilibrium phase stability. Cation and oxygen stoichiometries are analyzed with regard to their effect on key magnetic properties. Film strain formed due to thermal and lattice mismatch is of great concern since it influences the choice of the substrate. Finally, thin film deposition techniques are valued for their benefits in strontium ferromolybdate thin film technology.</p></subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">SSPA Scientific and Practical Materials Research Center of NAS of Belarus, Division of Cryogenic Research, Minsk, 220072 Belarus</subfield> <subfield code="0">(orcid)0000-0001-7679-4968</subfield> <subfield code="a">Nikolay Kalanda</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">SSPA Scientific and Practical Materials Research Center of NAS of Belarus, Division of Cryogenic Research, Minsk, 220072 Belarus</subfield> <subfield code="a">Evgenij Artsiukh</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Solid State Electronics Laboratory, TU Dresden, Dresden, 01062 Germany</subfield> <subfield code="0">(orcid)0000-0002-7062-9598</subfield> <subfield code="a">Gerald Gerlach</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1921334</subfield> <subfield code="z">md5:34d5e83cdbbda928ad035499d6a2ae6f</subfield> <subfield code="u">https://zenodo.org/record/3665613/files/Suchaneck_et_al-2019-physica_status_solidi_(b).pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Solid State Electronics Laboratory, TU Dresden, Dresden, 01062 Germany</subfield> <subfield code="0">(orcid)0000-0002-9440-2232</subfield> <subfield code="a">Gunnar Suchaneck</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">magnetic properties</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">point defects</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">stoichiometry</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">strontium ferromolybdate</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">thin films</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1002/pssb.201900312</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Challenges in Sr2FeMoO6−δ Thin Film Deposition</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">778308</subfield> <subfield code="a">Physical principles of the creation of novel SPINtronic materials on the base of MULTIlayered metal-oxide FILMs for magnetic sensors and MRAM</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> </record>
Views | 144 |
Downloads | 80 |
Data volume | 153.7 MB |
Unique views | 132 |
Unique downloads | 69 |