Dataset Open Access
Ceolini, Enea;
Taverni, Gemma;
Payvand, Melika;
Donati, Elisa
{ "description": "<p>This dataset contains data for hand gesture recognition recorded with 3 different sensors. </p>\n\n<p>sEMG: recorded via the Myo armband that is composed of 8 equally spaced non-invasive sEMG sensors that can be placed approximately around the middle of the forearm. The sampling frequency of Myo is 200 Hz. The output of the Myo is a.u </p>\n\n<p>DVS: Dynamic Video Sensor which is a very low power event-based camera with 128x128 resolution</p>\n\n<p>DAVIS: Dynamic Video Sensor which is a very low power event-based camera with 240x180 resolution that also acquires APS frames.</p>\n\n<p>The dataset contains recordings of 21 subjects. Each subject performed 3 sessions, where each of the 5 hand gesture was recorded 5 times, each lasting for 2s. Between the gestures a relaxing phase of 1s is present where the muscles could go to the rest position, removing any residual muscular activation.</p>\n\n<p> </p>\n\n<p>Note: All the information for the DVS sensor has been extracted and can be found in the *.npy files. In case the raw data (.aedat) was needed please contact</p>\n\n<p> </p>\n\n<p>enea.ceolini@ini.uzh.ch</p>\n\n<p>elisa@ini.uzh.ch</p>\n\n<p>==== README ====</p>\n\n<p> </p>\n\n<p>DATASET STRUCTURE:</p>\n\n<p>EMG, DVS and APS recordings</p>\n\n<p>21 subjects</p>\n\n<p>3 sessions for each subject</p>\n\n<p>5 gestures in each session ('pinky', 'elle', 'yo', 'index', 'thumb')</p>\n\n<p> </p>\n\n<p>SINGLE DATASETS:</p>\n\n<p>- relax21_raw_emg.zip: contains raw sEMG and annotations (ground truth of gestures) in the format `subjectXX_sessionYY_ZZZ` with `XX` subject ID (01 to 21), `YY` session ID (01-03) and `ZZZ` that can be ‘emg’ or ‘ann’.</p>\n\n<p> </p>\n\n<p>- relax21_raw_dvs.zip: contains the full-frame dvs events in an array with dimensions 0 -> addr_x, 1 -> addr_y, 2 -> timestamp, 3 -> polarity. The timestamps are in seconds and synchronized with the Myo. Each file is in the format `subjectXX_sessionYY_dvs` with `XX` subject ID (01 to 21), `YY` session ID (01-03).</p>\n\n<p> </p>\n\n<p>- relax21_cropped_aps.zip: contains the 40x40 pixel aps frames for all subjects and trials in the format `subjectXX_sessionYY_Z_W_K` with `XX` subject ID (01 to 21), `YY` session ID (01-03), Z gesture ('pinky', 'elle', 'yo', 'index', 'thumb’), W trial ID (1-5), `K` frame index.</p>\n\n<p> </p>\n\n<p>- relax21_cropped_dvs_emg_spikes.pkl: spiking dataset that can be used to reproduce the results in the paper. The dataset is a dictionary with the following keys:</p>\n\n<ul>\n\t<li><strong>- </strong><strong>y</strong>: array of size 1xN with the class (0->4).</li>\n\t<li><strong>- </strong><strong>sub</strong>: array of size 1xN with the subject id (1->10).</li>\n\t<li><strong>- </strong><strong>sess</strong>: array of size 1xN with the session id (1->3).</li>\n\t<li><strong>- </strong><strong>dvs</strong>: list of length N, each object in the list is a 2d array of size 4xT_n where T_n is the number of events in the trial and the 4 dimensions rappresent: 0 -> addr_x, 1 -> addr_y, 2 -> timestamp, 3 -> polarity .</li>\n\t<li><strong>- </strong><strong>emg</strong>: list of length N, each object in the list is a 2d array of size 3xT_n where T_n is the number of events in the trial and the 3 dimensions rappresent: 0 -> addr, 1 -> timestamp, 3 -> polarity.</li>\n</ul>\n\n<p> </p>\n\n<p> </p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "@id": "https://orcid.org/0000-0002-2676-0804", "@type": "Person", "name": "Ceolini, Enea" }, { "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "@id": "https://orcid.org/0000-0001-8951-3133", "@type": "Person", "name": "Taverni, Gemma" }, { "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "@id": "https://orcid.org/0000-0001-5400-067X", "@type": "Person", "name": "Payvand, Melika" }, { "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "@id": "https://orcid.org/0000-0002-8091-1298", "@type": "Person", "name": "Donati, Elisa" } ], "url": "https://zenodo.org/record/3663616", "datePublished": "2020-02-12", "version": "3.0", "keywords": [ "EMG", "DVS", "DAVIS", "Hand gesture recognition", "Sensor fusion", "Myo" ], "@context": "https://schema.org/", "distribution": [ { "contentUrl": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_cropped_aps.zip", "encodingFormat": "zip", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_cropped_dvs_emg_spikes.pkl", "encodingFormat": "pkl", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_raw_dvs.zip", "encodingFormat": "zip", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_raw_emg.zip", "encodingFormat": "zip", "@type": "DataDownload" } ], "identifier": "https://doi.org/10.5281/zenodo.3663616", "@id": "https://doi.org/10.5281/zenodo.3663616", "@type": "Dataset", "name": "EMG and Video Dataset for sensor fusion based hand gestures recognition" }
All versions | This version | |
---|---|---|
Views | 1,988 | 1,072 |
Downloads | 6,106 | 461 |
Data volume | 1.0 TB | 461.0 GB |
Unique views | 1,654 | 931 |
Unique downloads | 1,935 | 223 |