Dataset Open Access
Ceolini, Enea;
Taverni, Gemma;
Payvand, Melika;
Donati, Elisa
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_cropped_aps.zip" }, "checksum": "md5:0aca5c68eb7cecffcd9f2e3a53cb9124", "bucket": "102a63cc-433e-49b4-be9f-3ee2f482b38e", "key": "relax21_cropped_aps.zip", "type": "zip", "size": 186878096 }, { "links": { "self": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_cropped_dvs_emg_spikes.pkl" }, "checksum": "md5:8bda33fec74cb4f49a05c6a89eef7163", "bucket": "102a63cc-433e-49b4-be9f-3ee2f482b38e", "key": "relax21_cropped_dvs_emg_spikes.pkl", "type": "pkl", "size": 2049159861 }, { "links": { "self": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_raw_dvs.zip" }, "checksum": "md5:e767b6b586c8f6919f945d770fbac529", "bucket": "102a63cc-433e-49b4-be9f-3ee2f482b38e", "key": "relax21_raw_dvs.zip", "type": "zip", "size": 1592923718 }, { "links": { "self": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e/relax21_raw_emg.zip" }, "checksum": "md5:9fab8c87e8f04a56c3fdcb1797644885", "bucket": "102a63cc-433e-49b4-be9f-3ee2f482b38e", "key": "relax21_raw_emg.zip", "type": "zip", "size": 12711873 } ], "owners": [ 68055 ], "doi": "10.5281/zenodo.3663616", "stats": { "version_unique_downloads": 1927.0, "unique_views": 925.0, "views": 1065.0, "version_views": 1979.0, "unique_downloads": 217.0, "version_unique_views": 1647.0, "volume": 449910815210.0, "version_downloads": 6094.0, "downloads": 451.0, "version_volume": 1004042118084.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3663616", "conceptdoi": "https://doi.org/10.5281/zenodo.3228845", "bucket": "https://zenodo.org/api/files/102a63cc-433e-49b4-be9f-3ee2f482b38e", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3228845.svg", "html": "https://zenodo.org/record/3663616", "latest_html": "https://zenodo.org/record/3663616", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3663616.svg", "latest": "https://zenodo.org/api/records/3663616" }, "conceptdoi": "10.5281/zenodo.3228845", "created": "2020-02-12T10:15:46.808491+00:00", "updated": "2020-02-12T19:21:06.424946+00:00", "conceptrecid": "3228845", "revision": 2, "id": 3663616, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3663616", "version": "3.0", "license": { "id": "CC-BY-4.0" }, "title": "EMG and Video Dataset for sensor fusion based hand gestures recognition", "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3228845", "relation": "isVersionOf" } ], "relations": { "version": [ { "count": 3, "index": 2, "parent": { "pid_type": "recid", "pid_value": "3228845" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3663616" } } ] }, "grants": [ { "code": "753470", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::753470" }, "title": "Neuromorphic EMG Processing with Spiking Neural Networks", "acronym": "NEPSpiNN", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "EMG", "DVS", "DAVIS", "Hand gesture recognition", "Sensor fusion", "Myo" ], "publication_date": "2020-02-12", "creators": [ { "orcid": "0000-0002-2676-0804", "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "name": "Ceolini, Enea" }, { "orcid": "0000-0001-8951-3133", "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "name": "Taverni, Gemma" }, { "orcid": "0000-0001-5400-067X", "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "name": "Payvand, Melika" }, { "orcid": "0000-0002-8091-1298", "affiliation": "Institute of Neuroinformatics, UZH/ETH Zurich", "name": "Donati, Elisa" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "description": "<p>This dataset contains data for hand gesture recognition recorded with 3 different sensors. </p>\n\n<p>sEMG: recorded via the Myo armband that is composed of 8 equally spaced non-invasive sEMG sensors that can be placed approximately around the middle of the forearm. The sampling frequency of Myo is 200 Hz. The output of the Myo is a.u </p>\n\n<p>DVS: Dynamic Video Sensor which is a very low power event-based camera with 128x128 resolution</p>\n\n<p>DAVIS: Dynamic Video Sensor which is a very low power event-based camera with 240x180 resolution that also acquires APS frames.</p>\n\n<p>The dataset contains recordings of 21 subjects. Each subject performed 3 sessions, where each of the 5 hand gesture was recorded 5 times, each lasting for 2s. Between the gestures a relaxing phase of 1s is present where the muscles could go to the rest position, removing any residual muscular activation.</p>\n\n<p> </p>\n\n<p>Note: All the information for the DVS sensor has been extracted and can be found in the *.npy files. In case the raw data (.aedat) was needed please contact</p>\n\n<p> </p>\n\n<p>enea.ceolini@ini.uzh.ch</p>\n\n<p>elisa@ini.uzh.ch</p>\n\n<p>==== README ====</p>\n\n<p> </p>\n\n<p>DATASET STRUCTURE:</p>\n\n<p>EMG, DVS and APS recordings</p>\n\n<p>21 subjects</p>\n\n<p>3 sessions for each subject</p>\n\n<p>5 gestures in each session ('pinky', 'elle', 'yo', 'index', 'thumb')</p>\n\n<p> </p>\n\n<p>SINGLE DATASETS:</p>\n\n<p>- relax21_raw_emg.zip: contains raw sEMG and annotations (ground truth of gestures) in the format `subjectXX_sessionYY_ZZZ` with `XX` subject ID (01 to 21), `YY` session ID (01-03) and `ZZZ` that can be ‘emg’ or ‘ann’.</p>\n\n<p> </p>\n\n<p>- relax21_raw_dvs.zip: contains the full-frame dvs events in an array with dimensions 0 -> addr_x, 1 -> addr_y, 2 -> timestamp, 3 -> polarity. The timestamps are in seconds and synchronized with the Myo. Each file is in the format `subjectXX_sessionYY_dvs` with `XX` subject ID (01 to 21), `YY` session ID (01-03).</p>\n\n<p> </p>\n\n<p>- relax21_cropped_aps.zip: contains the 40x40 pixel aps frames for all subjects and trials in the format `subjectXX_sessionYY_Z_W_K` with `XX` subject ID (01 to 21), `YY` session ID (01-03), Z gesture ('pinky', 'elle', 'yo', 'index', 'thumb’), W trial ID (1-5), `K` frame index.</p>\n\n<p> </p>\n\n<p>- relax21_cropped_dvs_emg_spikes.pkl: spiking dataset that can be used to reproduce the results in the paper. The dataset is a dictionary with the following keys:</p>\n\n<ul>\n\t<li><strong>- </strong><strong>y</strong>: array of size 1xN with the class (0->4).</li>\n\t<li><strong>- </strong><strong>sub</strong>: array of size 1xN with the subject id (1->10).</li>\n\t<li><strong>- </strong><strong>sess</strong>: array of size 1xN with the session id (1->3).</li>\n\t<li><strong>- </strong><strong>dvs</strong>: list of length N, each object in the list is a 2d array of size 4xT_n where T_n is the number of events in the trial and the 4 dimensions rappresent: 0 -> addr_x, 1 -> addr_y, 2 -> timestamp, 3 -> polarity .</li>\n\t<li><strong>- </strong><strong>emg</strong>: list of length N, each object in the list is a 2d array of size 3xT_n where T_n is the number of events in the trial and the 3 dimensions rappresent: 0 -> addr, 1 -> timestamp, 3 -> polarity.</li>\n</ul>\n\n<p> </p>\n\n<p> </p>" } }
All versions | This version | |
---|---|---|
Views | 1,979 | 1,065 |
Downloads | 6,094 | 451 |
Data volume | 1.0 TB | 449.9 GB |
Unique views | 1,647 | 925 |
Unique downloads | 1,927 | 217 |