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Abstract 

This work is dedicated to the assessment of the nonlinear behaviour of masonry panels with regular 

texture and subject to in-plane loads, by means of numerical pushover analysis and an analytical 

homogenized model. Two numerical models are considered and adopted for performing a set of 

numerical tests: a Discrete Model (DEM) developed by authors and a Discrete/Finite Element 

Model (FEM/DEM) frequently adopted in rock mechanics field and effectively extended to 

masonry structures. In both models the hypotheses of rigid blocks and elastic-plastic joints 

following a Mohr-Coulomb yield criterion are adopted. 

The aim of this work is twofold: i) a comparison and a calibration of the numerical models, 

evaluating their effectiveness in determining ultimate loads and collapse mechanisms of masonry 

panels, by assuming a nonlinear homogenized model for regular masonry as reference solution; ii) 

the evaluation of sensitivity of masonry behaviour and numerical models to panel dimension ratio 

and to varying masonry texture. Sliding collapse mechanisms changing to overturning collapse 

mechanisms for increasing panel and block height-to-width ratio are obtained and the results 

obtained with the numerical models turn out to be in good agreement. 
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1 INTRODUCTION 

Masonry is one of the more common structural materials in ordinary and monumental buildings in 

Italy and Europe, since it has been adopted for centuries up to present days. As well known, 

masonry is a composite or heterogeneous structural material obtained by assembling natural or 

artificial blocks by means of mortar layers or dry joints. Analytical and numerical modeling of such 

a material represents a research field that is continuously characterized by the proposition of new 

more or less detailed models, given that the assessment of masonry structural behavior is 

fundamental for ensuring building safety condition and for restoration purposes. 

A wide set of analytical and numerical models may be adopted for studying masonry material. 

Models may be distinguished for different aspects; for instance, the scale level considered, the type 

of actions adopted, and the type of analysis performed. This work is dedicated to the analysis of 

small/medium scale masonry specimens, subject to in-plane loads and nonlinear analyses are 

carried on by the models considered. 

In order to perform numerical or computer-aided analysis of masonry at small/medium scale, 

detailed models accounting for material heterogeneity may be taken into account and, for this 

purpose, discrete models [1] and heterogeneous finite element models [2,3] represent two main 

model categories that may be found in literature. However, continuous models accounting for 

masonry details at microstructure [4] represent a further important and effective tool for studying 

masonry behavior and innovative models, in this field of analysis, are continuously developed [5-8]. 

Focusing on discrete models, it must be pointed out that they represent a class of numerical models 

able to study the mechanical behavior of systems made of particles, blocks or multiple bodies. This 

model type was introduced for modeling rocks [9,10] and a computer code was also created for this 

purpose in plane case [11]. Discrete element models (DEMs) are characterized by two components: 

elements and contacts. Elements may be modelled as infinitely rigid bodies or may be considered as 

deformable bodies by adding strain deformation parameters to each block [12] or by subdividing 

them into Finite Elements (FEs). In both cases, the number of degrees of freedom needed for 

describing the model is larger with respect to the case of infinitely rigid bodies. Elements are 

subject to displacements and rotations that may become large during analysis, then DEMs are 

frequently formulated in the dynamic field and dynamic algorithms are adopted for obtaining 

numerical solutions; for instance, starting with a perturbation to the initial model and solving the 

equation of motion with a direct integration in time domain. Contacts between elements may be 

modelled with proper elements or by evaluating element overlapping, and in many cases they are 

often characterized by contact detection algorithms. 
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Considering DEMs having elements subdivided into FEs, the resulting model is often called 

FEM/DEM [13,14,15,16]. In the field of masonry structures, this code has already been used for 

determining ultimate loads of masonry panels and arches [17,18]. Moreover, similar FEM/DEM 

codes have been recently introduced and applied to the field of masonry structures in-plane loaded 

by static and dynamic actions [19,20]. Thanks to the FE discretization, FEM/DEM codes are able to 

simulate masonry damage both at joint level and at block level; however, the number of degrees of 

freedom involved in analysis requires a large computational effort and for this reason it does not 

allow to model complex masonry structures. 

In order to reduce the computational effort, discrete models with infinitely rigid elements may 

represent a simpler modelling choice, in particular if ancient masonry characterized by strong 

blocks and weak mortar or dry joints is studied. It must be pointed out that masonry specimens may 

be characterized by a regular arrangement of resisting elements having a well-defined square or 

rectangular shape; moreover, displacements caused by any type of load are usually smaller than 

those that may be found in soil and rock systems. In particular, due to the small displacements with 

respect to the overall specimen dimensions, contact topology does not vary during analysis. For 

these reasons, a simplified discrete model that neglects contact detection algorithms allows to 

further reduce the computational effort of the analysis. Cecchi and Sab [21] proposed a simple and 

effective discrete model with rigid elements and elastic interfaces for modelling regular masonry in- 

and out-of-plane loaded. This model was extended to the case of random masonry [22] and recently 

it has been extended to the in-plane modal analysis of regular masonry by introducing a matrix 

solution method [23]. In particular, the rigid DEM has been recently extended to the nonlinear 

analysis of in-plane loaded masonry panels by adopting a Mohr-Coulomb yield criterion for 

restraining joint actions [24]. A model adopting the same assumptions in linear and non-linear fields 

was studied by Trovalusci and Masiani [25], moreover it is worth noting that the hypotheses of rigid 

blocks and dry joints following a Mohr-Coulomb yield criterion are often adopted in the field of 

limit analysis of masonry [26-29]. 

The rigid DEM introduced previously has been already compared and calibrated with a FEM/DEM 

code in elasticity [30]. Moreover in a recent contribution, authors have initially compared the two 

models also accounting for material nonlinearity [31]. In this contribution, rigid DEM and 

FEM/DEM already considered by authors are deeply calibrated and compared in the field of 

material nonlinearity by performing a wide set of pushover analyses of masonry panels having dry 

joints. Such a comparison is fundamental for calibrating the joint stiffness values adopted by the 

rigid DEM with respect to the zero-thickness interfaces adopted by the FEM/DEM. Numerical 

analyses allow to determine ultimate loads and collapse mechanisms of the case studies considered; 
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furthermore, the influence of panel overall dimension ratio is taken into account together with the 

influence of block dimension ratio. Ultimate loads are also compared with analytic solutions based 

on a homogenized yield criterion that takes into account masonry microstructure. 

This paper is organized as follows: the geometric model representing regular masonry is introduced 

and nonlinear behaviour at joint level is described; DEM and FEM/DEM are presented separately 

for first and then a parameter calibration between models is proposed; several case studies of 

masonry panels with varying overall dimension ratio and block dimension ratio are introduced; a 

homogenized yield criterion for masonry panels is defined and finally numerical tests with DEM 

and FEM/DEM are performed. 

 

2 GEOMETRIC MODEL 

Masonry panels having regular texture and subject to in-plane loads are investigated. Block 

dimensions are (Figure 1a): a (height), b (width) and t (thickness). Masonry regularity is 

represented by the so-called ‘running bond’ pattern, characterized by each block surrounded by six 

neighbors by means of six interfaces (Figure 1b). Due to the pattern considered, horizontal 

interfaces width is equal to half block width and vertical interfaces height is coincident with block 

height. In the following, four block width-to-height ratios are taken into account in order to evaluate 

the influence of local size effect on overall panel behavior with particular attention to ultimate loads 

and collapse mechanisms in case of specimens subject to self-weight and increasing lateral loads, 

for instance b/a = 4, 2, 1, 0.25 (Figure 2). 

In order to represent historical masonry, blocks are modeled as rigid bodies and dry or weak/thin 

mortar joints are modelled as interfaces. Let yi,j denote the position of the center of the generic Bi,j 

block (Figure 1b), in the Euclidean space; it must be pointed out that j can actually take arbitrary 

values, while i is such that i+j is always an even number. Due to rigid block hypothesis, a generic 

block exhibits a rigid body motion in the two-dimensional (2D) case given by: 

, , , ,( ) ( )i j i j i j i j  u y u Ω y y , (1) 

where , , ,

1 2{ }i j i j i j Tu uu  is a vector collecting block horizontal and vertical translations and Ωi,j is a 

rotation skew tensor characterized by one component ,

3

i j , representing block rotation with respect 

to its center. Following the notation of the original work [21], interfaces are denoted with 
1 2,k k  

with k1, k2 = ± 1 for the horizontal case and k1 = ± 2, k2 = 0, for the vertical one. 
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3 INTERFACE CONSTITUTIVE MODEL 

The deformability of the model is lumped at interface level. Interfaces between blocks are modeled 

following an elastoplastic constitutive law, based on a Mohr-Coulomb yield criterion. 

3.1 Elastic interface and isotropic joint 

In the elastic field [32], the interface behaviour is given by a linear relation between interface 

tractions and the deformation between adjacent blocks. Then, normal and tangential stresses 

| |{ }T σ  over a generic interface depend on the relative displacement between the blocks 

connected by the interface: σn=K[[d]], where n is the vector normal to the interface, 

| | 3[[ ]] { }Td d dd  collects the relative displacements or ‘jumps’ between the blocks connected 

by the interface. In particular, relative displacement components are normal and tangential relative 

translations 
| |[[ ]] { }Td du , and relative rotations d3. 

In case of mortar joints K is given by 

1 1
= ( )

2(1 ν ) (1 2ν )

M

M M

E

e

  
   

   
K I n n   (2) 

where EM and νM are the Young’s modulus and the Poisson’s ratio of mortar, and I is the identity 

tensor. Note that tensor K has, in this case, a diagonal form. In case of dry joints, a fictitious 

stiffness is defined, accounting for block surface roughness. 

3.2 Interface with Mohr-Coulomb response 

In both numerical models considered in this work material nonlinearity is present at interface level 

only, since the hypothesis of rigid blocks is adopted. Mortar or dry joints are modeled as a Mohr-

Coulomb interfaces, then the yield criterion depends on cohesion 0c   (with c = 0 in case of dry 

joints) and friction angle 0 / 2   . Adopting a statically admissible approach, the interface 

failure condition can be expressed as 

| | | |( , ) | | tan 0f c         , (3) 

where   and | |  denote the normal and shear component of the stress vector acting on the generic 

interface Σ (omitting k1,k2 for simplicity). Adopting a cinematically admissible approach, for any 

point along the interface, the Mohr-Coulomb yield criterion is expressed by 

ctg [[ ]] if [[ ]] | [[ ]] | sin
( ,[[ ]]) =

otherwise

c  


   




u n u n u
n u  (4) 

where [[ ]]u  denotes the velocity jump across the interface Σ when following the normal n to the Σ 

interface. The first case may be also expressed as || tanu u    . 
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4 DISCRETE MODEL WITH RIGID ELEMENTS 

As stated in the introduction, the rigid DEM presented here is based on the original numerical 

method formulated in elastic field in case of regular periodic masonry [21] and recently extended to 

the field of material nonlinearity [24]. Particularity of the proposed DEM is the reduction of model 

degrees of freedom to block centre translations and block rotation with respect to its centre: 

, , , ,

1 2 3{ , , }i j i j i j i j Tu u q  for the generic block Bi,j (Figure 1b). Then, panel overall degrees of freedom 

are collected in q and relative displacements between adjacent blocks connected by an interface 

1 2,k k  may be written as function of block degrees of freedom [24]. 

As stated previously, σn=K[[d]], whereas in the non-linear field, normal and tangential stresses 

follow the Mohr-Coulomb yield criterion introduced in the previous section. Another particularity 

of the proposed DEM is the reduction of interface stresses to a set of forces and couples applied to 

block centers and in equilibrium with external forces. Then, the interactions between adjacent 

blocks through the interface are represented by actions 1 2 1 2 1 2 1 2, , , ,

| | 3{ }
k k k k k k k k Tf f mf (Figure 3), 

where f ,
| |f  are normal and tangential interface forces, respectively, and m3 is interface couple. In 

the elastic case, it can be demonstrated that [[ ]] [[ ]] f K d K A d , where A is a diagonal matrix 

collecting interface area and moment of inertia [23,24]. In general, diagonal terms of tensor K  are 

| |,K K , and Km, representing normal, tangential and rotational interface stiffnesses, respectively. 

In the non-linear field, interface actions must satisfy the Mohr-Coulomb yield criterion, represented 

by the following conditions: 

| | ||

3

,

| | | | ( ) tan ,

| | ( ) .

t

t

t c

f f

f f f

m f f l



 





  

   

 

f e

f e  (5) 

that represent, respectively, detachment, sliding and rotational failure modes, where ft = cS/tan  is 

the tensile strength of the interface, with S = Sv = at or Sh = bt/2 for a vertical and horizontal 

interface, respectively. Characteristic interface length lc is the maximum distance of the interface 

normal force with respect to block center. 

The problem of a masonry panel subject to external actions Fext may be solved by means of a 

molecular dynamics algorithm [21,33,34] starting from the equation of motion of the masonry 

assemblage or by means of a traditional static solution method: 

2 2( / ) ( / )panel extt dt     M q K q q F , (6) 

panel extK q F , (7) 
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where M is the (diagonal) mass matrix of the panel collecting block mass and polar inertia, 
panelK  

is the in plane panel stiffness matrix and μ is the damping coefficient (neglected for simplicity). It is 

worth noting that the first system of equations (Eq. 6) may be solved considering each equation 

(and degree of freedom) separately, adopting a predictor-corrector algorithm GEAR of order 2 [21] 

without determining explicitly panel matrices, whereas Eq. 7 needs the determination of panel 

stiffness matrix. In a recent contribution [24], both solution methods have been compared and the 

static one turned out to be faster than the dynamic one and equally effective. 

However, both solution methods have to take into account material nonlinearity by updating 

interface actions with iterative processes. In the dynamic solution method, a generic iteration is 

represented by an increment of relative displacements corresponding to a time increment with fixed 

external loads, whereas in the static solution method, a generic iteration is represented by a relative 

displacement increment due to an external load increment. 

At the i-th iteration, for a given increment 
| | 3{ }i i i Td d d  

, the new interface actions are 

computed by evaluating for first the elastic contribution: 

, 1

, 1

| | | | | | | |

, 1

3 3 3

,

,

.

i el i

i el i

i el i

m

f f K d

f f K d

m m K d









   





 

 

 

 (8) 

If interface actions satisfy the yield criterion in Eq. 5, the elastic guess is correct and 

, , ,

| | 3 | | 3{ } { }i i i T i el i el i el Tf f m f f m  . If 
,i el

tf f  , then 
| | 3{ } { 0 0}i i i T T

tf f m f  , otherwise 

the normal projection according to the tangential force criterion is done: 

,

, ,

| | | | | | | | | | | |

, , 2

| | | | | |

' tan ,

[ ( )] ,

[| | ( ) tan ] / [ tan ]

i el

s

i i el i el

i el i el

t

f f K d

f f sign f K d

f f f K K

 



  

   

 

 

 

   

 (9) 

Then ,

| | 3{ ' }i i el Tf f m
 is projected according to the moment criterion obtaining: 

, ,

3 3 3

, 2

3

' ,

[ ( )] ,

[| | ( ' ) ] / [ ].

i

m c

i i el i el

m m

i el

m t c m c

f f K l

m m sign m K

m f f l K K l







  

 

 

 

   

 (10) 

Following the static solution method of Eq. 7, limit load multipliers are also obtained by solving 

numerically an incremental problem with increasing external loads: 
panel extK q F , in this case 

panel stiffness matrix is updated during the analysis taking into account the Mohr-Coulomb yield 

criterion and setting equal to zero interface stiffness values when the corresponding limit condition 

in Eq. 5 is not respected. 
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5 FEM/DEM MODEL 

In recent times an increasing number of models attempted to combine the advantages of Finite and 

Discrete Element methods. In the late 1980’s, Cundall [35] and Hart, Cundall and Lemos [36] 

proposed a model with deformable blocks discretized by an internal Finite Element mesh with 2D 

triangular plane strain elements. Shi and Goodman [12] developed a discontinous deformation 

analysis method where deformable blocks are assumed to be in a state of uniform strain and stress. 

Barbosa [37] proposed a Discrete-Finite Element model where deformable blocks are meshed by 

quadrilateral isoparametric Finite Element.  

One of the approaches that combines DEM and FEM is the combined Finite-Discrete Element 

method (FEM/DEM) developed by Munjiza in the early 1990’s [13,14]. It consists in a discrete 

element method in which the individual elements are meshed into finite elements. The model relies 

into a triangular discretization of the domain with embedded crack elements that activate whenever 

the peak strength is reached. Finite elements allow for the reproduction of elastic strain into 

continuum, while discrete element algorithms allows to model interaction, fracture and 

fragmentation processes. 

Differently from the DEM described above, blocks can be assumed to behave as elastic bodies. 

Mortar joints might be idealized as elastic or elastic-plastic zero-thickness Mohr-Coulomb 

interfaces. In the present case, blocks have been modeled by means of finite elements while 

interfaces are modeled as discrete elements. 

These models, initially developed in the field of geo-mechanics, can properly represent the behavior 

of historical masonry, which could be considered as made of dry stone blocks exhibiting a periodic 

pattern. FEM/DEM allows to further extend the study to both linear and nonlinear masonry 

behavior, it has been successfully adopted to study the behavior of historical masonry construction 

[17-19,30,31,38]. 

The analyses have been performed by means of the FEM/DEM Y2D code [14], in particular the 

updated version Y-GUI [15] to make the input file and the Y-Geo code developed by the Geo 

Group of the Toronto University [16] to run the analyses, under 2D plane stress conditions. 

The properties adopted for Finite Elements are: Young’s modulus EB of the blocks, Poisson’s 

coefficient νB, density ρ and viscous damping μ, which depends by the mechanical properties and by 

the dimension of finite elements:  

1
2 BE

h
  

 
  

   (11) 
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where ξ is the damping ratio, equal to 1 for critical damping, and h is the height of elements, which 

has the same order of the inverse of the wave length. 

A penalty contact parameter is adopted to avoid compenetration of blocks, set equal to EB, and a 

tangential penalty adopted is equal to its half. The FEM/DEM method use a dynamic molecular 

algorithm, therefore a time step size has to be defined, related to the mechanical properties and the 

density adopted and to the dimension of finite elements of the mesh. Critical time step Tc is 

calculated as: 

 22
1CT  


   
  

 (12) 

where ω is the angular frequency: 

1 BE

h





 (13) 

The ratio EB/ρ is the speed of wave propagation inside the elements related to the minimum height 

of elements h. 

Joints are modelled as elastic-plastic Mohr-Coulomb interfaces, by means of specific cracks 

elements that are embedded between all the Finite Elements of the mesh. The mechanical 

parameters adopted for the joints are: cohesion c, friction angle ϕ and tensile strength ft which is set 

equal to c/tan . 

Fracture energy defines the non-linear behavior of the cracks elements once the value of cohesion 

or tensile strength – depending by the kinematic mechanism activated - are reached. Two different 

fracture energies are adopted: fracture energy of first mode GIC, related to the de-cohesion 

mechanism, and fracture energy of second mode GIIC, related to slippage mechanism. Fracture 

energy has been calculated as [39]: 

 2

C M

l c
GI

E

 
  (14) 

 2

S

C M

l t
GII

E

 
  (15) 

Where l is the length of interface, equal to b for a horizontal one and to a  for a vertical one, and EM 

is the Young’s modulus of the joints. In the model, the joints are modeled as zero-thickness 

interfaces, therefore the young’s modulus EM adopted is a Young’s modulus suitable for mortar.  
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6 FEM/DEM AND DEM MODEL PROCEDURES 

DEM and FEM/DEM are characterized by several differences related to the parameters needed for 

describing masonry linear and nonlinear behavior, together with different solution strategies for 

obtaining pushover curves for masonry panels subject to self-weight and increasing lateral loads. 

Considering masonry elements, DEM is characterized by infinitely rigid blocks, hence no 

parameters are needed for their description, whereas FEM/DEM envisages the definition of block 

elastic modulus and Poisson ratio EB, νB and a FE discretization of each block is adopted, as showed 

by Figure 4a for the four different texture types considered in this work. In order to compare the 

two models, blocks are considered rigid in FEM/DEM by the adoption of a very high value of EB 

(1000 GPa) and assuming νB = 0. 

Considering then joints or contacts between elements, DEM joints are represented by relative 

actions -normal force, shear force and moment- between the centres of adjacent blocks. Such 

actions depend on block relative displacements and are characterized by a linear elastic behavior 

governed by normal, tangential and rotational interface stiffness values, that depend on mortar 

elastic parameters EM, νM. Joint nonlinear behavior follows a simple Mohr-Coulomb yield criterion 

characterized by cohesion c and friction angle ϕ that are adopted for limiting interface actions. For 

simplicity, joint tensile strength is assumed to depend on cohesion ft = c/tanϕ. It is worth noting that 

in case of dry joints, a negligible cohesion value is assumed. 

In FEM/DEM joints are modelled by specific zero-thickness four-noded interface elements – crack 

elements – that are embedded between the edges of all adjacent triangular element pairs since from 

the beginning of simulation [40]. Then, potential cracks can open both into block elements and both 

along interfaces between blocks. Here, in order to simulate historic masonry behavior, in which 

cracks usually occur mainly in the mortar joints [3,41], two different joints have been used: one 

inside the blocks and the other between adjacent blocks. The former has been set as elastic in order 

to avoid the breaking of blocks, while the latter has been modeled as an elastic-plastic: crack 

elements between blocks behave as a Mohr-Coulomb interfaces with very low cohesion value, in 

order to model dry joints. The parameters for joints involved in the FEM/DEM are cohesion, 

friction ratio, tensile strength, and fracture energy. In order to compare the two numerical models, 

the same value of EM adopted by DEM has been used in order to determine fracture energy. 

The rigid DEM adopted in this work is based on small displacement hypothesis. In particular, block 

centre positions are not updated during analysis accounting for increasing displacements and no 

contact detection algorithms are needed, given that texture regularity is maintained during analyses. 

On the other hand, FEM/DEM is based on finite displacements, therefore larger displacements are 

reached during non-linear behavior with respect to DEM. 
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Focusing then on solution strategies, in this work, analyses performed with DEM adopt a static 

solution method, based on the determination of panel stiffness matrix by assembling stiffness 

matrices at interface level, and based on stiffness matrix update in case of interface damage. This 

approach allows performing fast pushover analyses with a small computational effort with respect 

to a molecular dynamics solution method [24]. FEM/DEM is based on a molecular dynamics 

solution method, which implies a wider computational effort respect to the static solution method 

adopted by DEM. Contact between discrete elements together with the deformability of discrete 

elements is described in terms of nodal forces and nodal displacements. The governing dynamic 

equations of the problem are solved adopting the central difference time integration scheme, that is 

an explicit integration scheme of the equation for each degree of freedom. With respect to the 

solution adopted by DEM, here it is not necessary to assemble or store stiffness matrices. The 

stability of the scheme is achieved through reducing the time step size, resulting in an increasing of 

computational effort for more refined mesh. Moreover, the following pushover analyses performed 

by FEM/DEM are obtained as the results of several dynamic non-linear analyses performed for each 

increasing value of horizontal load  

As previously stated, in the DEM, thanks to rigid block hypothesis, forces are applied at block 

centres (Figure 4b) and, similarly, panel restraints are imposed at block centres, whereas in the 

FEM/DEM, forces are lumped at the inner nodes of each block subdivision (Figure 4a). Different 

block subdivision are adopted in FEM/DEM depending by the arrangement of blocks, in order to 

allows the definitiom of different joints inside or between the blocks.  

 

7 ANALYTICAL REFERENCE MODEL 

In order to have a reference solution for the following numerical tests, dedicated to masonry panels 

subject to their own weight and proportional horizontal forces denoted by load multiplier , a 

homogenization procedure is adopted. Then, a homogeneous material equivalent to masonry in its 

geometry and in the material properties is defined [42]. A Representative Elementary Volume 

(REV) of masonry is defined as one half of that in Figure 1b. 

Following the work of De Buhan and De Felice [43], the support function π(ε) and the yield 

criterion G(y) on the REV, based on rigid blocks and interfaces following a Mohr-Coulomb yield 

criterion, are given by: 

( ) = { , ( )} ( ) = { | ( ), }sup G G       σ ε σ y y σ σ ε ε ε , (16) 

where ε is a second-order strain rate tensor. 

The Mohr-Coulomb failure condition at the interfaces provides: 
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1
[[ ]] if [[ ]] | | sin

(grad ( ) =

otherwise

s

c

ab tan


 

  
    

    
 

 u n u n [[u]]
u . (17) 

Further details may be found in the works of De Buhan and De Felice, Cecchi and Vanin [43,44]. 

Considering a homogeneous panel having length L, height H and thickness t, analytical load 

collapse multipliers λHOMO are evaluated following the work of Cecchi and Vanin [44] as function 

of block dimension ratio m = 2a/b, panel scale factor r = H/b and friction angle ϕ. 

In case of shear failure the collapse multiplier is: 

HOMOλ = tan    (18) 

Whereas in the case of flexural failure, a rigid body rotation mechanism is activated by a cracking 

line having inclination ψ from the lower-right corner of the panel (Figure 5): 

1/2

tan
tan
















m
   (19) 

Then, in case of flexural failure the collapse multiplier is given by: 

1/2 1/2

1/2

HOMO

2

1
if 

2 tan tan

λ = 3 2
tan

otherwise

3
tan

m H m
r

L

m
r

m
r

 









    
     

   
  
   
  


 
   
  

  (20) 

The values of λ provided by the equations 18 and 20 are a presented in the following Figure for the 

four masonry textures studied in the present work (Figure 2) and for the tree panel height-to-width 

ratios studied. 

 

8 NUMERICAL TESTS 

In the following numerical tests, three different base supported panels are considered. Panel width L 

is assumed constant and equal to 1440 mm, whereas height H is assumed equal to L/2, L and 2L 

(Figure 7). Moreover, as stated in Paragraph 1, four different block width-to-height ratios are also 

assumed, then a set of twelve case studies are taken into account by combining block dimension 

ratios together with panel dimension ratios. Assuming a block into a ‘running bond’ pattern (b/a = 

4) as reference, characterized by b = 240 mm and a = 60 mm, the following table resumes block 

dimensions and block number in both plane directions (n1 and n2, respectively) for the case studies 

considered. 
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Negligible cohesion c is considered for representing dry joints, whereas a friction ratio tan ϕ = 0.6 is 

assumed, corresponding to a friction angle of about 30°. Each panel is subject to a uniform vertical 

load representing its self-weight and to a horizontal increasing force representing a lateral 

acceleration statically applied. Then, nonlinear incremental analyses of the panels considered are 

performed in order to determine their ultimate load multiplier (λDEM and λFEM/DEM) and the 

corresponding collapse mechanisms. 

Ultimate load multipliers obtained with DEM and FEM/DEM are collected in Table 2 together with 

the corresponding analytic solutions. Figure 8 collects incremental curves obtained with the 

numerical models, compared with analytic solutions and Figures 9-11 collect collapse mechanisms. 

Focusing for first on the thick panel case (H/L = 0.5), collapse mechanisms obtained with DEM are 

characterized by a slight sliding of horizontal joints that increases along panel height and by the 

rotation of blocks close to the upper-right corner for b/a from 4 to 1. The case with b/a = 1/4 is 

characterized by a generalized block rotation along second and third rows. Collapse mechanisms 

obtained with FEM/DEM present a more evident sliding of horizontal joints with respect to block 

rotation. Such differences in collapse mechanisms are motivated by the joint rotational stiffness 

accounted by DEM that allows a more evident block rotation with respect to the FEM/DEM. 

However, ultimate loads obtained with the two numerical models are in quite good agreement also 

with analytical results for b/a from 4 to 1. For the case with b/a = 1/4 FEM/DEM is characterized 

by an ultimate load multiplier closer to that obtained with b/a = 1, probably due to the same size of 

horizontal interfaces that govern the sliding mechanism. 

Considering then the square panel case (H/L = 1), collapse mechanisms obtained with DEM and 

FEM/DEM are typical shear failure mechanisms, characterized by a diagonal cracking line starting 

from the lower-right corner and moving to the upper portion of panel left side. The resulting 

triangular/trapezoidal panel portion over the cracking line is subject to a rotation or overturning 

mechanism. Due to the rigid block hypothesis, cracking line involves subsequent horizontal and 

vertical dry joints, however its overall inclination increases for reducing b/a ratio, as showed also 

by the analytic solution (Eq. 19). This aspect is evident for the panel with b/a = 1/4, that is 

characterized by a small triangular portion collapsing on the right side of the panel. Moreover, 

FEM/DEM collapse mechanism shows a clear crack line with an overall inclination equal to 45°, 

given that horizontal joint length is coincident with vertical joint height. In case of square panels, 

DEM and FEM/DEM collapse load multipliers are in better agreement with respect to the previous 

case for all b/a ratios considered. Moreover, both numerical models are in quite good agreement 

with analytic solutions, except for the ‘running bond’ case (b/a = 4). 
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Considering finally the slender panel (H/L = 2), collapse mechanisms obtained with DEM and 

FEM/DEM are characterized by a diagonal crack similarly to the previous case. However in this 

case, a bigger and slender portion of the panel is subject to a rotation mechanism, leading to smaller 

collapse load multipliers with respect to the other panels considered. The slender panel with b/a = 

1/4 is characterized by a small triangular portion subject to an overturning mechanism. More 

generally, with this panel type, collapse load multipliers are in quite good agreement with analytic 

solutions. 

 

9 CONCLUSIONS 

In this contribution, the nonlinear behaviour of masonry panels with regular texture and subject to 

in-plane loads has been investigated by means of two numerical models: a Discrete Model (DEM) 

developed by authors and a Discrete/Finite Element Model (FEM/DEM) originally introduced for 

studying rock mechanics problems and effectively extended to masonry structures. These models 

have been compared and calibrated, given that a Mohr-Coulomb yield criterion have been adopted 

for representing joint or interface elastic-plastic behaviour in both numerical models. Moreover, 

rigid block hypothesis typical of the proposed DEM has been also considered with FEM/DEM by 

adopting a large elastic modulus for blocks. 

Numerical pushover analysis of masonry panels subject to self-weight and increasing proportional 

lateral loads have been performed and an analytical homogenized model has been taken as reference 

for the determination of collapse load multipliers. Three different panel height-to-width ratios and 

four different masonry textures have been considered. 

The numerical test campaign showed that the DEM and FEM/DEM models represent a simple and 

effective tool for studying the nonlinear behavior of masonry structures, in particular both models 

are able to take into account the actual texture of masonry walls, thus they are able to describe with 

accuracy the real crack pattern that may develop in masonry walls and to reveal the potential 

collapse mechanisms. DEM is simpler than FEM/DEM and requires a smaller computational effort, 

however it is less accurate than FEM/DEM and it does not account for typical aspects of discrete 

models such as large displacements and contact variation during analysis. DEM turns out to be a 

good and fast modelling choice for studying historical masonry specimens characterized by weak or 

dry joints between blocks, whereas it is not able to represent block deformation and cracking in case 

of stronger mortar joints and in this last case the FEM/DEM represents the more accurate solution. 

However, the critical comparison and calibration between DEM and FEM/DEM carried out in this 

work allowed to obtain results in good agreement also with the analytic solution. 
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The sensitivity analysis to masonry geometric parameters showed that sliding collapse mechanisms 

are typical of thick panels with larger horizontal joint length with respect to vertical joint height, 

these mechanisms are characterized by ultimate load multipliers quite close to the value of friction 

ratio. Rotation or overturning collapse mechanisms are typical of slender panels and of panels with 

smaller horizontal joint length with respect to vertical joint height. 

Further developments of this work will regard the evaluation of masonry specimens with joints 

having a not negligible cohesion, in order to better evaluate DEM limits with respect to the more 

accurate FEM/DEM. 
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FIGURE CAPTIONS 

Figure 1: Block dimensions (a) and geometric model adopted (b). 

Figure 2: Block width-to-height ratios adopted in this work. 

Figure 3: Interface between adjacent blocks and interface actions. 

Figure 4: Detail of block representation and applied forces in case of FEM/DEM (a) and DEM (b). 

Figure 5: Homogenized masonry panel with rotation mechanism. 

Figure 6: Ultimate load multipliers for masonry panels and increasing H/L ratio and for four 

masonry patterns. 

Figure 7: Panels considered for the numerical tests. 

Figure 8: Incremental analyses, load multiplier vs. displacement at the upper-right corner of the 

panel. (a) H/L = 0.5, (b) H/L = 1, (c) H/L = 2. 

Figure 9: Collapse mechanisms of masonry panels with H/L = 0.5. 

Figure 10: Collapse mechanisms of masonry panels with H/L = 1. 

Figure 11: Collapse mechanisms of masonry panels with H/L = 2. 

 

TABLE CAPTIONS 

Table 1: Case studies considered with the corresponding panel dimensions, block dimensions and 

block number along plane directions. 

Table 2: Comparison between ultimate load multipliers (RB = ‘running bond’, HB = ‘head bond’). 
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Figure 1: Block dimensions (a) and geometric model adopted (b). 
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Figure 2: Block width-to-height ratios adopted in this work. 
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Figure 3: Interface between adjacent blocks and interface actions. 
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Figure 4: Detail of block representation and applied forces in case of FEM/DEM (a) and DEM (b). 
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Figure 5: Homogenized masonry panel with rotation mechanism. 
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Figure 6: Ultimate load multipliers for masonry panels and increasing H/L ratio and for four 

masonry patterns. 
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Figure 7: Panels considered for the numerical tests.
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(a) 

 

(b) 
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(c)  

Figure 8: Incremental analyses, load multiplier vs. displacement at the upper-right corner of the 

panel. (a) H/L = 0.5, (b) H/L = 1, (c) H/L = 2. 
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Figure 9: Collapse mechanisms of masonry panels with H/L = 0.5. 
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Figure 10: Collapse mechanisms of masonry panels with H/L = 1. 
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Figure 11: Collapse mechanisms of masonry panels with H/L = 2. 

 



case 
L 

[mm] 

H 

[mm] 

B 

[mm] 

a 

[mm] 
n1 n2 

1 

1440 

720 

240 60 

6 12 

2 1440 6 24 

3 2880 6 48 

4 720 

120 60 

12 12 

5 1440 12 24 

6 2880 12 48 

7 720 

60 60 

24 12 

8 1440 24 24 

9 2880 24 48 

10 720 

60 240 

24 3 

11 1440 24 6 

12 2880 24 12 

 

Table 1: Case studies considered with the corresponding panel dimensions, block dimensions and 

block number along plane directions. 

 

H/L b/a λFEM/DEM λDEM λHOMO 

0.5 

4/1 (RB) 0.500 0.570 0.537 

2/1 (HB) 0.410 0.390 0.380 

1/1 0.310 0.260 0.269 

1/4 0.310 0.160 0.134 

1.0 

4/1 (RB) 0.380 0.390 0.537 

2/1 (HB) 0.320 0.310 0.380 

1/1 0.225 0.230 0.269 

1/4 0.140 0.110 0.134 

2.0 

4/1 (RB) 0.240 0.330 0.372 

2/1 (HB) 0.220 0.310 0.328 

1/1 0.175 0.200 0.267 

1/4 0.130 0.094 0.134 

 

Table 2: Comparison between ultimate load multipliers (RB = ‘running bond’, HB = ‘head bond’). 
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