Conference paper Open Access

Guided Analytics Software for Smart Aggregation, Cognition and Interactive Visualisation

Aleksandar Karadimce, Natasa Paunkoska (Dimoska), Dijana Capeska Bogatinoska, Ninoslav Marina and Amita Nandal


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Guided Analytics</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Data Aggregation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Augmented Cognitive</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Microservices</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Social Media</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Geospatial</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Temporal</subfield>
  </datafield>
  <controlfield tag="005">20210128002726.0</controlfield>
  <controlfield tag="001">3662582</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">17.01.2020</subfield>
    <subfield code="g">ICICV-2020</subfield>
    <subfield code="a">International Conference onInnovations in Computational Intelligence and Computer Vision</subfield>
    <subfield code="c">Jaipur, Rajasthan (INDIA)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">628451</subfield>
    <subfield code="z">md5:5696cd7ebe38c471b9d465942b56f31e</subfield>
    <subfield code="u">https://zenodo.org/record/3662582/files/ICICV2020_paper_93.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://icicv2020.com/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3662582</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Information Science and Technology ''St. Paul the Apostle'' – Ohrid</subfield>
    <subfield code="0">(orcid)0000-0002-5013-7967</subfield>
    <subfield code="a">Aleksandar Karadimce, Natasa Paunkoska (Dimoska), Dijana Capeska Bogatinoska,  Ninoslav Marina and Amita Nandal</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Guided Analytics Software for Smart Aggregation, Cognition and Interactive Visualisation</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825134</subfield>
    <subfield code="a">smART socIal media eCOsytstem in a blockchaiN Federated environment</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The development of tools that improve efficiency and inject intelligent insights into social media businesses through guided analytics is crucial for consumers, prosumers, and business markets. These tools enable contextualised socially aware and spatial-temporal data aggregation, knowledge extraction, cognitive learning about users` behaviour, and risk quantification for business markets. The proposed Tools for Analytics and Cognition framework will provide a tool-set of guided analytics software for smart aggregation, cognition and interactive visualisation with a monitoring dashboard. The aggregation, monitoring, cognitive reasoning, and learning modules will analyse the behaviour and engagement of the social media actors, diagnose performance risks and provide guided analytics to consumers, prosumers and application providers to improve collaboration and revenues, using the established Pareto-trust model. This framework will provide a seamless coupling with distributed blockchain-based services for early alert, real-time tracking and updated data triggers for reach and engagement analysis of events. Moreover, this will allow users to analyse, control and track their Return on Investment to enhance monetary inclusion in collaborative social media.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">10.5281/zenodo.3662582</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3662581</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3662582</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
332
17
views
downloads
All versions This version
Views 332332
Downloads 1717
Data volume 10.7 MB10.7 MB
Unique views 313313
Unique downloads 1616

Share

Cite as