Conference paper Open Access

Guided Analytics Software for Smart Aggregation, Cognition and Interactive Visualisation

Aleksandar Karadimce, Natasa Paunkoska (Dimoska), Dijana Capeska Bogatinoska, Ninoslav Marina and Amita Nandal


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3662582</identifier>
  <creators>
    <creator>
      <creatorName>Aleksandar Karadimce, Natasa Paunkoska (Dimoska), Dijana Capeska Bogatinoska,  Ninoslav Marina and Amita Nandal</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-5013-7967</nameIdentifier>
      <affiliation>University of Information Science and Technology ''St. Paul the Apostle'' – Ohrid</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Guided Analytics Software for Smart Aggregation, Cognition and Interactive Visualisation</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Guided Analytics</subject>
    <subject>Data Aggregation</subject>
    <subject>Augmented Cognitive</subject>
    <subject>Microservices</subject>
    <subject>Social Media</subject>
    <subject>Geospatial</subject>
    <subject>Temporal</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-01-17</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3662582</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy" resourceTypeGeneral="Text">10.5281/zenodo.3662582</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3662581</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The development of tools that improve efficiency and inject intelligent insights into social media businesses through guided analytics is crucial for consumers, prosumers, and business markets. These tools enable contextualised socially aware and spatial-temporal data aggregation, knowledge extraction, cognitive learning about users` behaviour, and risk quantification for business markets. The proposed Tools for Analytics and Cognition framework will provide a tool-set of guided analytics software for smart aggregation, cognition and interactive visualisation with a monitoring dashboard. The aggregation, monitoring, cognitive reasoning, and learning modules will analyse the behaviour and engagement of the social media actors, diagnose performance risks and provide guided analytics to consumers, prosumers and application providers to improve collaboration and revenues, using the established Pareto-trust model. This framework will provide a seamless coupling with distributed blockchain-based services for early alert, real-time tracking and updated data triggers for reach and engagement analysis of events. Moreover, this will allow users to analyse, control and track their Return on Investment to enhance monetary inclusion in collaborative social media.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825134/">825134</awardNumber>
      <awardTitle>smART socIal media eCOsytstem in a blockchaiN Federated environment</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
232
14
views
downloads
All versions This version
Views 232232
Downloads 1414
Data volume 8.8 MB8.8 MB
Unique views 214214
Unique downloads 1313

Share

Cite as