
MNRAS 000, 1–17 (2018) Preprint 9th February 2020 Compiled using MNRAS LATEX style file v3.0

Physical modelling of galaxy cluster Sunyaev–Zel’dovich data using
Einasto dark matter profiles

Kamran Javid1,2?, Yvette C. Perrott1,3, Clare Rumsey1,
and Richard D. E. Saunders1,2
1Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK
2Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
3School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
We derive a model for Sunyaev–Zel’dovich data from a galaxy cluster which uses an Einasto
profile to model the cluster’s dark matter component. This model is similar to the physical
models for clusters previously used by the Arcminute Microkelvin Imager (AMI) consortium,
which model the dark matter using a Navarro-Frenk-White (NFW) profile, but the Einasto
profile provides an extra degree of freedom. We thus present a comparison between two
physical models which differ only in the way they model dark matter: one which uses an
NFW profile (PM I) and one that uses an Einasto profile (PM II). We illustrate the differences
between the models by plotting physical properties of clusters as a function of cluster radius.
We generate AMI simulations of clusters which are created and analysed with both models.
From this we find that for 14 of the 16 simulations, the Bayesian evidence gives no preference
to either of the models according to the Jeffreys scale, and for the other two simulations, weak
preference in favour of the correct model. However, for the mass estimates obtained from the
analyses, the values were within 1σ of the input values for 14 out of 16 of the clusters when
using the correct model, but only in 6 out of 16 cases when the incorrect model was used to
analyse the data. Finally we apply the models to real data from cluster A611 obtained with
AMI, and find the mass estimates to be consistent with one another except in the case of when
PM II is applied using an extreme value for the Einasto shape parameter.

Key words: methods: data analysis – galaxies: clusters: general – cosmology: observations –
cosmology: theory.

1 INTRODUCTION

Clusters of galaxies are the most massive gravitationally bound ob-
jects known in the Universe, and as such sample the Universe’s
matter content. Some 85 to 90 percent (see e.g. Vikhlinin et al.
2006, Vikhlinin et al. 2009, Komatsu et al. 2011, Eckert et al. 2019
and references in these for data and issues) of cluster total mass
is in (non-baryonic) dark matter. Stars, gas and dust in galaxies,
as well as a hot ionised intra-cluster medium (ICM) make up the
remaining mass, with the latter being much the most massive ba-
ryonic component. The galaxies emit in the optical and infrared
wavebands, the ICM emits in X-ray via thermal Bremsstrahlung,
and interacts with cosmic microwave background (CMB) photons
via inverse Compton scattering. This last effect is known as the
Sunyaev–Zel’dovich (SZ) effect (Sunyaev and Zeldovich 1970).

It is this effect that the physical modelling of clusters described
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in Olamaie et al. (2012) (from here on referred to as MO12) and
Olamaie et al. (2013) aims to predict; this physical modelling has
been applied in for example Javid et al. (2018) (from here on KJ18)
and Javid et al. (2019) (KJ19). The model presented in MO12 uses
a Navarro-Frenk-White (NFW) profile (Navarro et al. 1995) for
the dark matter component of the galaxy cluster, which is derived
from N-body simulations of galaxy clusters. Einasto (1965) derives
an empirical profile for dark matter halos. Previous investigations
comparing the two darkmatter profiles using simulated data (see e.g.
Dutton andMacciò 2014, Meneghetti et al. 2014, Klypin et al. 2016
and Sereno et al. 2016) have shown that the Einasto model provides
a better fit. In particular, Sereno et al. (2016) showed that, for weak
lensing analysis of clusters, the NFW profile can overestimate virial
masses of very massive halos (≥ 1015MSun/h where MSun is units
of solar mass and h ≡ h100 = H0/(100 km s−1 Mpc−1)where H0 is
the value of the Hubble constant now) by up to 10%. Errors of this
magnitude are non-negligible and can have substantial effects on
the estimates of parameters such as the normalisation of the matter
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2 K. Javid et al.

density fluctuations σ8, the matter density ΩM, and the density and
equation of state of the dark energy field parameters ΩDE and w.

It is these previous analyses which have motivated us to derive
a physical galaxy cluster model for interferometric SZ data which
uses the Einasto profile to model the dark matter component of the
cluster. For a range of cluster model inputs we compare the physical
parameter profiles of the two models, to see how the clusters they
represent deviate from one another. We then compare the parameter
estimates and fits of the NFW and Einasto models for simulated
cluster data created with both Einasto and NFW profiles (see e.g.
Grainge et al. 2002), as well as real data for cluster A611 obtained
from theArcminuteMicrokelvin Imager (AMI) radio interferometer
system (Zwart et al. 2008), (Hickish et al. 2018). This is to see how
flexible themodels are inmodelling clusters generatedwith different
profiles, and test how well they fit real data.

Section 2 of this paper gives a brief overview of the theory
behind interferometry and the SZ effect. In Section 3 we derive the
physical model for interferometric SZ data which uses the Einasto
profile, and describe the Bayesian methodology for fitting a model
to the data. Section 4 present the results of our analysis, including
the radial profiles of physical parameters using both the model
presented here and the one derived in MO12 for a range of clusters.
We also present the results of applying these models to simulated
and real cluster data using Bayesian analysis.

A ‘concordance’ flat ΛCDM cosmology is assumed: ΩM =
0.3, ΩΛ = 0.7, ΩR = 0, ΩK = 0, σ8 = 0.8, w0 = −1, and wa = 0.
The first four parameters correspond to the (dark + baryonic) matter,
the cosmological constant, the radiation, and the curvature densities
respectively. σ8 is the power spectrum normalisation on the scale
of 8 h−1 Mpc now. w0 and wa are the equation of state parameters
of the Chevallier-Polarski-Linder parameterisation (Chevallier and
Polarski 2001).

2 MEASURING THE SZ EFFECTWITH AN
INTERFEROMETER

For a small field size, an interferometer samples from the two-
dimensional complex visibility plane u, also known as the u-v
plane. At frequency ν, the samples correspond to the Fourier com-
ponents of the sky brightness distribution Ĩν(u). Ĩν(u) is given by
the weighted Fourier transform of the surface brightness Iν(x)

Ĩν(u) =
∫ ∞
−∞

Aν(x)Iν(x)e2πiu ·x d2x, (1)

where x is the position in the sky relative to the phase centre and
Aν(x) is the primary beamof the antennas for a given frequency. The
positions at which Ĩν(u) are sampled from is therefore determined
by the physical orientation of the antennas. The change in CMB
intensity δI, due to the thermal SZ effect in a galaxy cluster is given
by (see e.g. Birkinshaw 1999)

δIcl,ν = TCMBy fν
∂Bν(T)
∂T

����
T=TCMB

, (2)

where the last factor is the derivative of the blackbody spectrum
with respect to temperature evaluated at the absolute temperature of
the CMB, which at present is TCMB = 2.728 K (Fixsen et al. 1996).
Bν(T) is the spectral radiance of blackbody radiation (given by
Planck’s law). The function fν expresses the spectral dependence
of the SZ signal and is derived from the Kompaneets equation
(Kompaneets 1957).

Rephaeli (1995) states that for the unmodified Kompaneets
equation to be valid, the optical depth of the cluster τ, must be

sufficiently large to justify using a diffusion approximation for the
scattering process. It is clear that at AMI observing frequencies
hPν � mec2 where hP is the Planck constant, me is the mass of
an electron and c is the speed of light, the photons scatter in the
Thomson limit. In this limit the scattering rate is ∝ σTne where
σT is the Thomson scattering cross-section and ne is the electron
number density in the ICM. Thus the optical depth is given by

τ =

∫
ne(r)σTdl, (3)

where r is the radius from the galaxy cluster centre and the integral
is along the line of sight. The non-relativistic form for fν is given
by

fν = X coth(X/2) − 4, (4)

where

X =
hPν

kBTCMB
. (5)

Here kB is the Boltzmann constant. Referring back to equation 2,
y is the Comptonisation parameter which is the number of colli-
sions multiplied by the mean fractional change in energy of the
photons per collision, integrated along the line of sight. On average
the electrons in the ICM transfer an energy kBTe(r)/mec2 to the
scattered CMB photons, where Te(r). In the Thomson scattering
regime described above this leads to

y =
σTkB
mec2

∫
Te(r)ne(r) dl . (6)

If an ideal gas equation of state is assumed for the electron gas
then in terms of the electron pressure Pe(r), the Comptonisation
parameter is given by

y =
σT

mec2

∫
Pe(r) dl . (7)

Combining equations 2, 4 and 7, we arrive at the following expres-
sion for δIν,cl in the non-relativistic limit

δIcl,ν =
2σT(kBTCMB)3X4eX

h2
Pc4(eX − 1)2

[X coth(X/2) − 4]
∫

Pe(r) dl . (8)

Relativistic treatments of fν have been considered in e.g. Re-
phaeli (1995), Itoh et al. (1998), Challinor and Lasenby (1998),
Nozawa et al. (1998), Pointecouteau et al. (1998), and more re-
cently Chluba et al. (2012), by incorporating relativistic terms into
the Kompaneets equation. Relativistic effects may be important in
clusters where the ICM temperatures are high. Indeed Arnaud et al.
(1994) andMarkevitch et al. (1996) have shown that electrons in the
ICM can reach energies above 10 keV. Challinor and Lasenby show
that these effects lead to a small decrease in the SZ effect. We have
calculated the relativistic correction at 15.5GHz using the SZPack
code of Chluba et al. (2012) and find that to a good approximation
(δIcl,rel − δIcl,non−rel)/δIcl,rel = −0.0034Te, where Te is the tem-
perature of ICM electrons, with the correction only reaching 5% at
≈ 15 keV. This is sub-dominant to other forms of error for AMI data
and we neglect it for the current analysis, although it may become
important for future instruments.

3 MODELLING INTERFEROMETRIC SZ DATA

We first discuss how to model δIν,cl arising from the SZ effect,
starting from input parameters (see Section 3.2 for more on what
input parameters are) which describe some physical properties of
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Physical modelling with Einasto profile 3

a cluster. Equation 1 can then be used to replicate the quantity
measured by an interferometer.
In Section 3.2 we discuss how to use Bayesian inference to perform
parameter estimation and model selection for comparison between
different models using the NFW and Einasto dark matter profiles.

3.1 Cluster models

We now consider two cases for modelling physical properties of
galaxy clusters, which we denote PM I and PM II. PM I is as
described inMO12, but with the alteration in the mapping from r200
to r500 (defined below) described in KJ19. PM II is qualitatively
similar to PM I, but with an Einasto profile replacing the NFW
profile used for the dark matter component in PM I.

Three cluster input parameters are required for either PM:
M(r200) which is the mass enclosed up to radius r200 from the
cluster centre, fgas(r200) which is the fraction of the total mass
attributed to the gas mass enclosed up to radius r200, and z, the
redshift of the cluster. A fourth input parameter is required for
the PM II which we call the Einasto parameter αEin, which is also
described below. Note that in general the radius r∆ is the radius from
the centre at which the average total enclosedmass density is∆ times
ρcrit(z), the critical density at the z of the cluster. ρcrit(z) is given
by ρcrit(z) = 3H(z)2/8πG where H(z) is the Hubble parameter and
G is Newton’s constant. Note further that the total mass out to r∆ is
given by

M(r∆) =
4π
3
∆ρcrit(z)r3

∆
. (9)

Hence r200 can be calculated from M(r200).

We assume spherical symmetry, hydrostatic equilibrium, and
that the cluster gas is an ideal gas. Both models follow the same
general computational steps, as follows.

(i) Given an input M(r200), z and fgas(r200), the normalisation
of the dark matter mass profile is fixed by the requirement that
Mdm(r200) = (1 − fgas(r200))M(r200) and the dark matter mass
profile Mdm(r) is then fully specified.
(ii) We make the further assumption that we can calculate an

initial estimate of the total mass profile of the cluster using only the
dark matter model profile, i.e. making the approximation that all of
the mass in the cluster is dark matter; or, equivalently, that the shape
of the sum of the dark matter and gas mass profiles resembles the
shape of the dark-matter-only profile

M(r) =
∫ r

0
4πr ′2

(
ρdm(r ′) + ρg(r ′)

)
dr′

≈
∫ r

0
4πr ′2

ρdm(r ′)
1 − fgas(r200)

dr′, (10)

where ρdm(r) and ρg(r) are the dark matter and gas density profiles
respectively.
(iii) Now we can analytically solve the hydrostatic equilibrium

equation dPg(r)
dr = −ρg(r)GM(r)

r2 for the gas mass density profile
ρg, given a template for the gas pressure Pg(r) and the initial dark-
matter-only estimate for M(r).

(iv) We then numerically integrate the ρg solution to get the gas
mass profile Mg(r) and fix the gas mass normalisation at r200 using
the input fgas(r200).
(v) Finally, we derive the pressure profile normalisation from the

gas mass normalisation and calculate the SZ signal.

We can iteratively improve the solution for ρg by re-solving
the hydrostatic equilibrium equation using updated estimates of
M(r) = Mg(r) + Mdm(r) at each iteration until the solutions con-
verge. Figure 1 shows the results of this improvement for a cluster at
z = 0.15 and with M(r200) = 1 × 1015MSun using an NFW profile
for the dark matter; it is clear that the approximation works very
well until small radii, and particularly near r200 and r500 which are
where we use the model to solve for our normalisation factors, so we
take the initial estimate of Mg(r) for our model. Note that a similar
attempt at relaxing the mass approximation was attempted in Javid
(2019), that involved solving differential equations in M through
the hydrostatic equilibrium relation. The work in Javid (2019) gave
the same results found in this paper.

Below we describe the specific implementation of PM II, re-
ferring the reader to MO12 for more details of PM I.

3.1.1 Dark matter profiles

Assuming an Einasto profile (Einasto 1965), the dark matter density
profile for a cluster ρdm,PM II is given by

ρdm,PM II = ρ−2 exp
[
− 2
αEin

((
r

r−2

)αEin

− 1
)]
, (11)

where αEin is a shape parameter, r−2 is the scale radius where
the logarithmic derivative of the density is −2 (analogue to rs in
the NFW model, but note that in general r−2 , rs), and ρ−2 is
the density at this radius. The parameter αEin controls the degree
of curvature of the profile. The larger its value, the more rapidly
the slope varies with respect to r . In the limit that αEin → 0, the
logarithmic derivative is −2 for all r . For comparison we state the
NFW dark matter profile used in PM I (Navarro et al. 1995)

ρdm,PM I(r) =
ρs(

r
rs

) (
1 + r

rs

)2 , (12)

where ρs is a density normalisation constant, and rs is another scale
radius. It is tempting to assume that the Einasto profile is capable of
providing a better fit due to the fact that the Einasto profile has an
extra degree of freedom (there are three for the Einasto profile, two
for the NFW), the shape parameter. However Klypin et al. (2016)
claims that this is not strictly true, as the Einasto profile was seen
to give a better fit to simulated dark matter haloes even with αEin
fixed. The asymptotic values of the logarithmic slope for the two
profiles are as follows: as r → 0 then d ln ρdm,PM I(r)/d ln r →
−1 and d ln ρdm,PM II(r)/d ln r → 0. As r → ∞ then
d ln ρdm,PM I(r)/d ln r → −3 and d ln ρdm,PM II(r)/d ln r → −∞.
The magnitude of αEin determines how quickly the slope changes
between the two asymptotic values. Throughout this work when we
refer to the NFW or Einasto model, we really mean the physical
model which uses the NFW or Einasto model when considering the
dark matter density profile.
Referring back to equation 11, the ratio r200/r−2 is defined as the
concentration parameter c200 (and similarly c200 = r200/rs for the
NFW profile). Dutton and Macciò (2014) determine an analytical
form for c200 as a function of total mass and redshift (for the redshift
range z = [0, 5]) for Einasto profiles based on simulations similar
to those described in Macciò et al. (2007) and Macciò et al. (2008)

log10 (c200) = j(z) + k(z) log10

[
M (r200)

1012h−1MSun

]
, (13)

where j(z) = 0.459 + 0.518 exp(−0.49z1.303) and k(z) = −0.13 +
0.029z.

MNRAS 000, 1–17 (2018)



4 K. Javid et al.

Figure 1. Comparison of the first-order and iteratively improved solutions for Mg(r) (left) and fgas(r) (right), for a cluster at z = 0.15 and with M(r200) =
1 × 1015MSun. Vertical lines show r500, r200 and the radius at which we cut off our cluster model.

Following the method outlined above, we first calculate our
first-order estimate for the total mass profile by integrating the
Einasto profile

M(r) ≈
∫ r

0
4πr ′2ρdm,PM II(r ′) dr′

=
4πρ−2r3

−2
αEin

exp (2/αEin)
(αEin

2

)3/αEin

× γ
[

3
αEin

,
2

αEin

(
r

r−2

)αEin ]
,

(14)

where γ [a, x] =
∫ x

0 ta−1e−tdt is the incomplete lower gamma func-
tion. The steps taken to get this result are given in Appendix A.
Equation 9 can be evaluated at r200 and equated with equation 14
evaluated at the same radius to obtain the following solution for ρ−2

ρ−2 =
200
3

(
r200
r−2

)3
ρcrit(z) ×

1[
1/αEin exp (2/αEin)

(
αEin

2

)3/αEin
]

× 1

γ
[

3
αEin

, 2
αEin

(
r200
r−2

)αEin ] .
(15)

Equivalently, equation 14 can be evaluated at r200 and set equal
to the known value of M(r200) to determine ρ−2. Note that ρ−2 is
the normalisation for our first-order approximation to the total mass
profile; the corresponding normalisation for the dark matter mass
profile is (1 − fgas(r200))ρ−2.

Figure 2 shows the logarithmic darkmatter density profiles as a
function of r for a cluster at z = 0.15 with M(r200) = 1× 1015MSun
and fgas(r200) = 0.12 for PM I and PM II for the αEin values:
0.05, 0.2, 2.0. It is clear that the Einasto profiles diverge the most
from each other at low r and for the high αEin value at high r as
well.
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Figure 2. Logarithmic dark matter density profiles as a function of log
cluster radius using NFW and Einasto models. Three values of the Einasto
profile are used: 0.05, 0.2, and 2.0. The additional input parameters used
to generate these profiles are: z = 0.15, M(r200) = 1 × 1015MSun and
fgas(r200) = 0.12.

3.1.2 Gas density and pressure profiles

As in PM I we follow Nagai et al. (2007) and assume a generalised-
NFW (GNFW) profile to parameterise the electron pressure Pe as

MNRAS 000, 1–17 (2018)
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a function of radius from the cluster centre,

Pe(r) =
Pei(

r
rp

)c (
1 +

(
r
rp

)a)(b−c)/a , (16)

where Pei is the pressure normalisation constant and rp is another
characteristic radius, defined by rp = r500/c500. The parameters
a, b and c describe the slope of the pressure profile at r ≈ rp,
r � rp and r � rp respectively. The slope parameters are taken
to be a = 1.0510, b = 5.4905 and c = 0.3081. These ‘universal’
values were taken from Arnaud et al. (2010) and are the best fit
GNFW slope parameters derived from the REXCESS sub-sample
(observed with XMM-Newton, Böhringer et al. 2007), as described
in Section 5 of Arnaud et al. We also take the Arnaud et al. value
of the gas concentration parameter c500 (note this is unrelated to
the concentration parameter associated with the dark matter profile)
which is 1.177. Note that inMO12, KJ18 andKJ19 slightly different
values derived for the standard self-similar case (Appendix B of
Arnaud et al.) were used (a = 1.0620, b = 5.4807, c = 0.3292 and
c500 = 1.156). It was shown in Olamaie et al. (2013) that PM I is
not affected by which of these two sets of parameters is used.
The analytical function used to convert from r200 to r500 in KJ19 is
specific to the NFW dark matter profile case and so is not applicable
in PM II. We have not found an analytic fitting function for the
conversion in the case of an Einasto dark matter profile and so we
obtain r500 iteratively as described in Appendix B.

We can relate the gas pressure Pg(r), to the electron pressure
through the relation

µgPg(r) = µePe(r), (17)

where µe is the mean gas mass per electron and µg is the mean mass
per gas particle. Mason and Myers (2000) state that for a plasma
with the cosmic helium mass fraction CHe = 0.24 and the solar
abundance values in Anders and Grevesse (1989), then µe = 1.146
and µg = 0.592 in units of proton mass.
Incorporating equations 14 and 17 into the hydrostatic equilibrium
equation gives the gas density

ρg(r) =
µe
µg

Pei

4πGρ−2r3
−2

1[
(1/αEin) exp(2/αEin) (αEin/2)3/αEin

]
× r

γ
[

3
αEin

, 2
αEin

(
r200
r−2

)αEin ]
×

(
r
rp

)−c [
1 +

(
r
rp

)a ]−( a+b−c
a

) [
b
(

r
rp

)a
+ c

]
.

(18)

Note that even though an analytical expression for ρg exists, within
this model there is no such equivalent for the total gas mass as

Mg(r) =
∫ r

0
4πρg(r ′)r ′2 dr ′ (19)

must be integrated numerically. Hence fgas(r) = Mg(r)/M(r) does
not have a closed form solution. Nevertheless, we can use equa-
tions 18 and 19 to determine Pei since we know M(r200), fgas(r200)
and r200. Evaluating equations 18 and 19 at r200 and solving for Pei

gives the following expression

Pei =

(
µg
µe

)
(Gρ−2r3

−2)
[
exp (2/αEin)

αEin
(αEin/2)3/αEin

]
Mg(r200)

× 1∫
r200

0
r ′3

[
b
(
r′
rp

)a
+c

]
γ
[

3
αEin

, 2
αEin

(
r′
r−2

)αEin ] (
r′
rp

)c [
1+

(
r′
rp

)a ]( a+b−ca ) dr ′

,

(20)

which must be evaluated numerically. Once Pei has been calculated,
the Comptonisation parameter as a function of projected radius on
the sky can be calculated using equation 7 which in turn can be used
to calculate the surface brightness using equation 8. Finally this can
be Fourier transformed to get the quantity comparable to what an
interferometer measures, so that the physical model can be used to
analyse data obtained with AMI.

3.1.3 Additional cluster parameters

The cluster gas properties are fully determined by the model, and
so other parameters not used for AMI data analysis can readily be
calculated. For example, as stated in Section 2 of MO12 the radial
profile of the electron number density is given by ne(r) = ρg(r)/µe.
Using the ideal gas assumption, the electron temperature Te(r) is
given by

Te(r) =
(
4πµgGρ−2r3

−2
kB

) [
(1/αEin) exp (2/αEin) (αEin/2)3/αEin

]
×
γ

[
3
αEin

, 2
αEin

(
r
r−2

)αEin ]
r

×
[
1 +

(
r
rp

)a] [
b
(

r
rp

)a
+ c

]−1
,

(21)

which also equals Tg(r). This could be used to calculate relativistic
corrections to the SZ signal.
The gas mass can be determined numerically from equation 19,

Mg(r) =
(
µe
µg

)
1
G

Pei
ρ−2

1[
(1/αEin) exp (2/αEin) (αEin/2)3/αEin

]
r3
−2

×

∫
r

0

r ′3

[
b
(
r′
rp

)a
+ c

]
γ

[
3
αEin

, 2
αEin

(
r′
r−2

)αEin ]
×

(
r ′

rp

)c [
1 +

(
r ′

rp

)a] (
a+b−c

a

)
dr ′,

(22)

which can also be used to determine fgas(r).

3.2 Bayesian inference

The analysis of AMI data carried out in Section 4.2 is done using
Bayesian inference. We now give a summary of this in the context
of both parameter estimation and model comparison.

MNRAS 000, 1–17 (2018)
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3.2.1 Parameter estimation

Given a modelM and dataD, one can obtain probability distribu-
tions of the input parameters (also known as sampling parameters
or model parameters) Θ conditioned on M and D using Bayes’
theorem:

Pr (Θ |D,M) = Pr (D |Θ,M) Pr (Θ |M)
Pr (D |M) , (23)

where Pr (Θ |D,M) ≡ P (Θ) is the posterior distribution of the
model parameter set, Pr (D |Θ,M) ≡ L (Θ) is the likelihood func-
tion for the data, Pr (Θ |M) ≡ π (Θ) is the prior probability dis-
tribution for the model parameter set, and Pr (D |M) ≡ Z is the
Bayesian evidence of the data given a modelM. The evidence can
be interpreted as the factor required to normalise the posterior over
the model parameter space:

Z (D) =
∫
L (Θ) π (Θ) dΘ, (24)

where the integral is carried out over the N-dimensional parameter
space. For the models using AMI data considered here, the input
parameter set can be split into two subsets, (which are assumed to
be independent of one another): cluster parameters, Θcl and radio-
source or ‘nuisance’ parameters, Θrs. The set of cluster parameters
is αEin, M(r200), fgas(r200), z, xc, and yc (where the former only
appears for PM II). xc and yc are the cluster centre offsets from the
interferometer pointing centre, measured in arcseconds. The cluster
prior probability distributions are given in Section 3.2.3. For more
details on the radio-source modelling, please refer to Section 5.2
of Feroz et al. (2009) (from here on FF09). For more information
on the likelihood function and covariance matrix used in the AMI
analysis, we refer the reader to Hobson and Maisinger (2002) and
Sections 5.3 of FF09 and 3.2.3 of KJ19.

3.2.2 Model comparison

The nested sampling algorithm, MultiNest (Feroz et al. 2009)
calculates Z (D) by making use of a transformation of the N-
dimensional evidence integral into a one-dimensional integral. The
algorithm also generates samples fromP (Θ) as a by-product, mean-
ing that it is suitable for both the parameter estimation and model
comparison aspects of this work. Comparing models in a Bayesian
way can be done as follows. The probability of a modelM, condi-
tioned onD can also be calculated using Bayes’ theorem

Pr (M|D) = Pr (D |M) Pr (M)
Pr (D) . (25)

Hence for two modelsM1 andM2, the ratio of the probability of
the models conditioned on the same dataset is given by

Pr (M1 |D)
Pr (M2 |D)

=
Pr (D |M1) Pr (M1)
Pr (D |M2) Pr (M2)

, (26)

where Pr(M2)/Pr(M1) is the a-priori probability ratio of the mod-
els. We set this to one, i.e. place no bias towards a particular model
before performing the analysis. Hence the ratio of the probabilities
of the models given the data is equal to the ratio of the evidence
values obtained from the respective models (for brevity we define
Zi ≡ Pr (D |Mi)). The evidence is simply the average of the like-
lihood function over the parameter space, weighted by the prior
distribution. This means that the evidence is larger for a model if
more of its parameter space is likely and smaller for a model with
large areas in its parameter space having low likelihood values. A
larger parameter space, either in the form of higher dimensionality

or a wider domain results in a lower evidence value all other things
being equal. Hence the evidence ‘punishes’ more complex models
over basic (lower dimensionality / smaller input parameter space
domains) ones which give an equally good fit to the data. Thus the
evidence automatically implements Occam’s razor: when you have
two competing theories that make exactly the same predictions, the
simpler one is the preferred. Jeffreys (1961) provides a scale for
interpreting the ratio of evidences as a means of performing model
comparison (see Table 1). A value of ln(Z1/Z2) above 5.0 (less
than −5.0) presents strong evidence in favour ofM1 (M2). Values
2.5 ≤ ln(Z1/Z2) < 5.0 (−5.0 < ln(Z1/Z2) ≤ −2.5) present mod-
erate evidence in favour ofM1 (M2). Values 1 ≤ ln(Z1/Z2) < 2.5
(−2.5 < ln(Z1/Z2) ≤ −1) present weak evidence in favour ofM1
(M2). Finally, values −1.0 < ln(Z1/Z2) < 1.0 require more in-
formation to come to a conclusion over preference betweenM1 and
M2.

3.2.3 Prior probability distributions

For both PM I and PM II we adopt the following approach (exclud-
ing any mention of αEin in the former case).
Following FF09, the cluster parameters are assumed to be independ-
ent of one another, so that

π(Θcl) = π(αEin)π(M(r200))π( fgas(r200))π(z)π(xc)π(yc). (27)

Table 2 lists the type of prior used for each cluster parameter and the
probability distribution parameters. The values used for z and αEin
will be specified on a case by case basis in Section 4.2. The fgas(r200)
prior is based on Komatsu et al. (2011). We note that more recent
observations support a higher value, e.g. Eckert et al. (2019) find a
median fgas(r200) = 0.146 for a sample of high-mass, low-redshift
clusters; a more correct prior should take account mass-dependence
(e.g. Dvorkin and Rephaeli 2015) but we leave this refinement for
future work.

4 RESULTS

4.1 Cluster parameter profiles

We first present the results of using the Einasto model in the pro-
filing of cluster dark matter for a range of different cluster input
parameters, along with the equivalent results from PM I.
We consider two input masses, M(r200) = 1 × 1014MSun and
M(r200) = 1 × 1015MSun and use z-values of 0.15 and 0.9. We
take fgas(r200) = 0.12 following Komatsu et al. (2011), and con-
sider αEin values of 0.05, 0.2, and 2.0 – see Figure 2. Klypin et al.
(2016) find a positive correlation between αEin and the mass of a
cluster, suggesting that the clusters considered here with relatively
large (small) values for αEin and small (large) values for M(r200)
may be considered unphysical based on the findings of their paper.
Nevertheless we proceed with our range of clusters as we would like
to analyse the behaviour at these extreme values. We note that the
same r range (−2 ≤ log10(r) ≤ 0.5 (where r is in units of Mpc))
is considered for each cluster, and thus even though each parameter
profile is self-similar in r with respect to mass and redshift, they are
different for each cluster over the range of r considered here.

4.1.1 Dark matter mass profiles

Figure 3 shows the dark matter mass profiles. The Einasto profiles
are calculated using equation 14 and the NFW profile from the
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ln(Z1/Z2) Interpretation Probability of favoured model
≤ 1.0 better data are needed ≤ 0.75
≤ 2.5 weak evidence in favour ofM1 0.923
≤ 5.0 moderate evidence in favour ofM1 0.993
> 5.0 strong evidence in favour ofM1 > 0.993

Table 1. Jeffreys scale for assessing model preferability based on the log of the evidence ratio of two modelsM1 andM2.

Parameter Prior distribution
xc N(0′′, 60′′)
yc N(0′′, 60′′)
z δ(z)
M(r200) U[log(0.5 × 1014MSun), log(50 × 1014MSun)]
fgas(r200) N(0.12, 0.02)
αEin δ(αEin)

Table 2. Cluster parameter prior distributions, where the normal distribu-
tions are parameterised by their mean and standard deviations.

equivalent relation given in MO12 (equation 5). Note that these
are proportional to the first-order total mass solutions, i.e. M(r) ≈
(1 − fgas(r200))Mdm(r).

The αEin = 2 case always converges quickly as the density
rapidly falls to zero, while the other three profiles including the
NFW show divergent behaviour at the largest radii considered here.
The high mass inputs result in similar profiles for the αEin = 0.05,
αEin = 0.2 and NFW cases, whereas the low mass inputs result in
the αEin = 0.05 case diverging somewhat more rapidly than the
others.

4.1.2 Gas density profiles

Figure 4 shows the gas density profiles. The Einasto profiles are
calculated using equation 18 and the NFW profile from the equi-
valent relation given in MO12 (equation 6). Note that these are the
first-order solutions for ρg(r), i.e. assuming M(r) ∝ Mdm(r) when
solving the hydrostatic equilibrium equation.

The plots show that the profiles are similar for all inputs of
mass and redshift, with the αEin = 0.2 Einasto profile again most
resembling the NFW profile. However, the αEin = 2.0 profile has
the highest gas density at high r for both masses and both z values.

4.1.3 Gas mass profiles

Figure 5 shows Mg(r) as a function of cluster radius. As in Figure 3
with the dark matter mass profiles, the high mass inputs correspond
to divergent behaviour at large r . But for αEin = 2.0 the profile of
Mg(r) also shows a more noticeable such divergence. Furthermore,
in all four input parameter cases, αEin = 2.0 shows more divergent
behaviour than other values of αEin and the NFW profile in gas
mass, which is in contrast to the dark matter mass profiles.

4.1.4 Gas temperature profiles

Gas temperature profiles are shown in Figure 6. The αEin = 2.0
is very distinctive, always peaking at much higher r than the other
three and also always much more sharply.

4.2 Bayesian analysis of AMI data

We now focus our attention on applying the PM II to simulated and
real AMI data, to compare the parameter estimates and Bayesian
evidences with those obtained from the PM I.

4.2.1 Simulated AMI data

Sereno et al. (2016) study the errors associated with fitting NFW
profiles to Einasto dark matter halos and vice versa for weak lensing
studies. We conduct similar work in the context of simulated SZ
observations. The simulations were carried out using the in-house
AMI simulation package Profile, which has been used in various
forms in e.g. Grainge et al. (2002), Olamaie et al. (2013) and KJ19.
As before we consider Einasto profiles with the αEin values 0.05,
0.2, and 2.0 plus anNFWprofile. eachwith M(r200) = 1×1014MSun
or M(r200) = 1 × 1015MSun, z = 0.15 or z = 0.90 and fgas(r200) =
0.12. Note for all of these simulations no radio-sources, primordial
CMB or confusion noise were included, and instrumental noise was
set to a negligible level.

We first compare the posterior distributions for the input para-
meters (except those with δ-function priors). The posterior distri-
butions are plotted using GetDist1, and the contours on the two-
dimensional plots represent the 95% and 68% mean confidence
intervals. Table C1 in Appendix C summarises the input and output
values of the 16 simulations. The output values are the marginal-
ised posterior mass mean estimates and standard deviations. The
first column gives the model used to simulate the cluster, with the
following two columns giving the mass and z input values. For each
simulation, we analysed the data using two models, one using the
NFW profile and one using an Einasto profile. For data simulated
using an NFW profile, when analysing the data with an Einasto pro-
file we used αEin = 0.2. For data simulated using an Einasto profile,
when analysing the data with an Einasto profile we set αEin equal
to the value used as the input for the simulation. We also repeated
each simulation 10 times with different noise realisations to check
the statistical significance of our results.

Wefirstly note that theBayesian evidence values for the Einasto
and NFW analyses are the same within the errors in almost all
cases, with only the αEin = 2.0 and M(r200) = 10 × 1014MSun
cases showing a weak preference for the correct model. This can
be explained as follows. Both models implement a GNFW profile
for the pressure distribution, with the physical model providing the
characteristic scale and normalisation parameters rp and Pei (see
equation 16). Therefore the SZ signal is entirely described by these
two parameters, and provided that the correct pair of values can be
reached using the physical model used for the analysis, the SZ signal
can be described equally well by either model. This is illustrated in
Figure 7, where we show the prior on rp and Pei induced by PM I
for the two redshifts of our simulations, over-plotted with the true
values for each of the simulations. It can be seen that the αEin = 2.0

1 http://getdist.readthedocs.io/en/latest/.

MNRAS 000, 1–17 (2018)

http://getdist.readthedocs.io/en/latest/


8 K. Javid et al.

−2.0 −1.5 −1.0 −0.5 0.0 0.5

log10(r/Mpc)

0.0

0.5

1.0

1.5

2.0

2.5

M
d
m
(r
)
(M

S
u
n
)

1e14 M(r200) =1×1014MSun, z=0.15
NFW
αEin=0.05

αEin=0.2

αEin=2.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5

log10(r/Mpc)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
d
m
(r
)
(M

S
u
n
)

1e15 M(r200) =1×1015MSun, z=0.15
NFW
αEin=0.05

αEin=0.2

αEin=2.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5

log10(r/Mpc)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
d
m
(r
)
(M

S
u
n
)

1e14 M(r200) =1×1014MSun, z=0.9
NFW
αEin=0.05

αEin=0.2

αEin=2.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5

log10(r/Mpc)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
d
m
(r
)
(M

S
u
n
)

1e15 M(r200) =1×1015MSun, z=0.9
NFW
αEin=0.05

αEin=0.2

αEin=2.0

Figure 3. Dark matter mass profiles as a function of log cluster radius using NFW and Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as inputs.
Top row has z = 0.15, bottom row has z = 0.9. Left column has M(r200) = 1 × 1014MSun, right column has M(r200) = 1 × 1015MSun.
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Figure 4. Logarithmic gas density profiles as a function of log cluster radius using NFW and Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as
inputs. Top row has z = 0.15, bottom row has z = 0.9. Left column has M(r200) = 1 × 1014MSun, right column has M(r200) = 1 × 1015MSun.
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Figure 5. Gas mass profiles as a function of log cluster radius using NFW and Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as inputs. Top row
has z = 0.15, bottom row has z = 0.9. Left column has M(r200) = 1 × 1014MSun, right column has M(r200) = 1 × 1015MSun.
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Figure 6. Gas temperature profiles as a function of log cluster radius using NFW and Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as inputs.
Top row has z = 0.15, bottom row has z = 0.9. Left column has M(r200) = 1 × 1014MSun, right column has M(r200) = 1 × 1015MSun.
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Figure 7. Prior induced on the rp and Pei parameters describing the gas
pressure profile using PM I (black contours; 68 and 95% levels), for the two
simulation redshifts, overplotted with the true values for our simulation set.
Black dots are PM I; red empty triangles, circles and squares are PM II with
αEin = 0.05, 0.2, 2.0 respectively. The set of points with lower rp/Pei values
correspond to the M(r200) = 1 × 1014MSun simulations and the set with
higher values to the M(r200) = 10 × 1014MSun simulations.

and M(r200) = 10×1014MSun cases are the only ones for which the
true value is significantly outside the prior, explaining the reduced
evidence values.

However, despite the identical evidence values, the mass con-
straints are clearly biased when using the wrong model as the map-
ping from M(r200) and fgas(r200) to rp and Pei differs depending on
the model. When simulating and analysing with the samemodel, we
find the mean of the mass posterior is within 1σ of the input value in
14 out of 16 cases (82% over all the noise realisations); this is higher
than the expected 68% due to the additional information provided
by the prior. When analysing the simulation with the wrong model,
we find this in only 6 out of 16 cases (42% over all the noise realisa-
tions). In Figure 8 we show the posteriors produced when analysing
the PM II simulation with αEin = 2.0, M(r200) = 10 × 1014MSun,
z = 0.9 with PM II and PM I. The correct rp and Pei values are
recovered in both cases, however the mass and gas fraction posteri-
ors are strongly biased from their true values when analysing with
PM I. The very low fgas(r200) value, far outside the prior, can be
understood by considering Figure 7; the rp/Pei prior is ‘thickened’
by allowing a greater range in fgas(r200), so to reach the rp/Pei para-
meter pair outside the prior, fgas(r200) must be dragged outside its
prior range.

Finally, we tried running the Bayesian analysis on eight of the
Einasto simulated clusters with uniform analysis priors on αEin.
These clusters corresponded to the simulations with input values of
either αEin = 0.2 or αEin = 2.0.

In both cases we analysed the simulations with a uniform prior
on αEin, U[0.05, 3.5]. The results fell into three general categor-
ies, examples of which are shown in Figure 9. In the first category,
αEin was completely unconstrained and the mass posterior was just
widened by the marginalization over αEin. This was generally the
case for the lower-mass clusterswithαEin = 2.0, which fallsmore to-
ward the centre of the allowed prior range (Figure 9a). In most other
cases, large, curving degeneracies were seen between the paramet-
ers which induced biases in the one-dimensional marginalised mass
constraints, although the true value was correctly located within the
two-dimensional constraints; a particularly severe example of this
is shown in Figure 9b. In only one case, the cluster with αEin = 0.2,
M(r200) = 10 × 1014MSun and z = 0.9, a strong constraint with
little degeneracy was produced on all parameters (Figure 9c). These
results can again be understood by considering the priors induced

Figure 8. Posterior distributions for cluster simulated with αEin = 2.0,
M(r200) = 1 × 1015MSun and z = 0.9, modelled with: Einasto dark matter
profile (black filled contours and solid lines), and NFW dark matter profile
(magenta empty contours and dashed lines). True values are shown with
black stars and vertical lines.

by the physical model with a given value of αEin on rp and Pei,
as shown in Figure 10. The constraint on αEin depends entirely on
whether the (rp, Pei) parameter pair can be reached using PM II with
a givenαEin value; the case ofαEin = 0.2, M(r200) = 10×1014MSun
and z = 0.9 is the only one where the priors induced by the different
physical models are quite separate and therefore the only one with
a strong constraint. The difference between the priors on rp and Pei
at z = 0.15 and z = 0.9 is simply produced by the differences in
c200 and ρcrit at the different redshifts.

We therefore see that although αEin can be constrained using
SZ data in some cases, in general it is unconstrained and varying
it can introduce biases in the one-dimensional marginalised mass
estimates. Referring back to the finding by Klypin et al. (2016) that
αEin and cluster mass are positively correlated, it makes sense in
future work to either incorporate a joint prior on M and αEin, or to
include a functional form between the two variables in the cluster
models.

4.2.2 Analysis of real AMI observations of A611

Following MO12 we conduct Bayesian analysis on data from ob-
servations with AMI of the cluster A611 at z = 0.288, which has
been studied through its X-ray emission, strong lensing, weak lens-
ing and SZ effect (see Schmidt and Allen 2007, Donnarumma et
al. 2011, Romano et al. 2010 and Rumsey et al. 2016 respectively).
These studies suggest that there is no significant contamination from
radio-sources and that the cluster has similar weak lensing and X-
ray masses and is close to the TX–TSZ relation for clusters close to
hydrostatic equilibrium.
Referring back to Section 3.2.3, we take z = 0.288 and for the ana-
lysis with the PM II we consider three different cases separately –

MNRAS 000, 1–17 (2018)
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(a) (b) (c)

Figure 9. Posterior distributions of Einasto model input parameters for: (a) αEin = 2.0, M(r200) = 1 × 1014MSun and z = 0.9, (b) αEin = 0.2, M(r200) =
10 × 1014MSun and z = 0.15 simulated cluster, and (c) αEin = 0.2, M(r200) = 10 × 1014MSun and z = 0.9 simulated clusters.

Figure 10. Prior induced on the rp and Pei parameters describing the gas
pressure profile using PM II, for a representative set of αEin values, 0.2
(solid magenta), 1.0 (transparent blue) and 2.0 (empty black), where the
contours shown are the 68% levels, for the two simulation redshifts. The
true values for the simulations analysed varying αEin are overplotted with
circles (αEin = 0.2) and squares (αEin = 2.0). The set of points with lower
rp/Pei values correspond to the M(r200) = 1 × 1014MSun simulations and
the set with higher values to the M(r200) = 10 × 1014MSun simulations.

αEin ∈ {0.05, 0.2, 2.0} – so that in total there are four sets of results
to compare for A611 (including the NFW model). The Bayesian
analysis was conducted in the same way as it was for the simula-
tions in the previous Section.
The means and standard deviations of the four analyses are given in
Table 3. As in Section 4.1, αEin = 0.05 and αEin = 0.2 show similar
results to PM I. αEin = 2 gives a different estimate for M(r200),
and its posterior distribution is shown in Figure 11 along with that
obtained with the NFW profile. The mean mass estimates are within
one combined standard deviation away from each other. However,
as seen in Table 3 the value of ln(ZEin/ZNFW) imply that ‘nomodel
is favoured by the data’ according to the Jeffreys scale. This is en-
tirely consistent with the results obtained from the simulations in
the previous Section.

0.09 0.12 0.15 0.18

fgas(r200)

−25

0

25

50

y c
/a

rc
se
c

0.4

0.8

1.2

M
(r

20
0)
/M

S
u
n

1e15

0 30 60

xc/arcsec

0.09

0.12

0.15

0.18

f g
as
(r

20
0)

−25 0 25 50

yc/arcsec

0.4 0.8 1.2

M(r200)/MSun
1e15

NFW
αEin=2.0

Figure 11. Marginalised posterior distributions of physical model input
parameters for the NFW and αEin = 2.0 models applied to real A611
data. The contour plots are the two-dimensional marginalised plots of the
parameters named in the corresponding row / column. The line plots are the
fully marginalised posterior distributions.

5 FORECASTING

Our simulations have shown that SZ data are generally unable to
distinguish between these physical models based on the thermal SZ
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Model xc (arcsec) yc (arcsec) M(r200) (×1014MSun) fgas(r200) ln (Z)
NFW 24.7 ± 12.4 13.9 ± 11.5 7.84 ± 1.24 0.129 ± 0.020 38629.4 ± 0.3
αEin = 0.05 22.7 ± 12.5 13.1 ± 12.6 7.45 ± 1.24 0.130 ± 0.019 38629.2 ± 0.3
αEin = 0.2 25.5 ± 12.8 14.9 ± 13.0 7.67 ± 1.27 0.127 ± 0.017 38629.7 ± 0.2
αEin = 2.0 24.3 ± 12.4 14.3 ± 13.2 6.17 ± 1.12 0.130 ± 0.017 38629.2 ± 0.2

Table 3. Marginalised posterior distribution mean values and standard deviations of physical model input parameters and Bayesian evidences associated with
each model, applied to real A611 data.

effect alone; our simulations have a thermal noise level≈ 100× smal-
ler than a typical AMI observation and include no primordial CMB
or radio source confusion noise (or other instrumental systematics).
However, recently it has been shown that Planck cluster constraints
may be biased by the relativistic SZ corrections which depend on
the temperature of the cluster (e.g. Erler et al. 2018), and including
these corrections will become crucial for forthcoming instruments
with higher sensitivity and angular resolution such as CCAT-prime
(e.g. Parshley et al. 2018). Our models provide a consistent physical
mechanism for modelling and including the relativistic corrections.
It has been shown inMittal, de Bernardis &Niemack (2018) that as-
suming isothermality biases cluster constraints based on simulated
CCAT-prime data, so given the very different temperature profiles
produced by our models (see Figure 6), forthcoming instruments
may be able to distinguish between these models based on spatially-
resolved relativistic SZ constraints, although the effects of cooling
flow and merger activity must also be considered.

6 CONCLUSIONS

Based on the physical model introduced in Olamaie et al. (2012)
(PM I) which uses an NFW profile (Navarro et al. 1995) to model
the dark matter content of galaxy clusters, we derive a new physical
model (PM II) which models the dark matter with an Einasto profile
(Einasto 1965). The Einasto profile has an additional degree of
freedom compared to the NFW profile, which dictates the shape
of the dark matter density as a function of radius. For different
values of αEin we have investigated the profiles of several physical
properties of a cluster, namely the dark matter density, dark matter
mass, gas density, gas mass and gas temperature. We have also
provided the equivalent profiles in the NFW case. From this we
found the following.

• Of the three values of αEin considered, αEin = 0.2 gave the
most similar profile to that given by the NFW model (as discussed
in Dutton and Macciò 2014), with the main discrepancy between
the two arising in the peak amplitude of the gas temperature.
• αEin = 2.0 showed the most convergent behaviour in Mdm(r)

at high r , but the most divergent in Mg(r) in the same limit.
• The gas temperature profiles were somewhat different for the

αEin values considered here. This suggests that if one can carefully
measure the temperature profile of a cluster, then one could infer
αEin and use this in the model presented here (though one has to be
aware of cooling flow and merger activity).

Next we applied Bayesian analysis to simulated and AMI datasets
using PM I and PM II, to compare the models’ parameter estimates
and fits to the data. Simulating clusters with either NFW or Einasto
dark matter profiles, which were then ‘observed’ by AMI, we found
the following.

• When the wrong cluster model is used in the analysis, the
correct mass value is inferred to within 1σ for only 6 of the 16

clusters (compared to 14 out of 16 for the correct model). In certain
cases, the gas mass fraction at r200 is also inferred incorrectly,
which in turn is due to the true values of the GNFW scale and
normalisation parameters (rp and Pei) laying outside of the model’s
priors for these parameters.
• Looking at the Bayesian evidence values for the simulations,

for 14 of the 16 clusters no model is preferred over the other one
according to the Jeffreys scale.
• The two simulations which did show preference towards a

model picked the correct one, with ‘weak preference’ according
to the Jeffreys scale. Both of these simulations were generated with
PM II (and showed preference to PM II over PM I). From inspection
of the priors on rp and Pei for PM I for these two clusters, it was
apparent that the true value was far away from the prior peaks, thus
explaining the low evidence values for these runs.
• When αEin was allowed to vary in the analysis, it was found

to be mostly unconstrained (except in one exceptional case), and
the large, curving degeneracies between αEin and the other cluster
parameters could produce biases in the one-dimensional mass con-
straints. To safely allow variation in αEin, a physically-motivated
relationship between M and αEin could be introduced such as that
found by Klypin et al. (2016).

Using real data from cluster A611 we found, consistent with the
simulations:

• The αEin = 0.05 and αEin = 0.2 models gave very similar res-
ults to the NFWmodel; the αEin = 2model however underestimates
M(r200) relative to the other three models.
• The Bayesian evidence values calculated from these four ana-

lyses were roughly equal, suggesting no model provided a statistic-
ally more significant fit relative to the others.

In a forthcoming paper Perrott et al. (2019), Bayesian analysis will
be performed on joint AMI-Planck datasets.
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APPENDIX A: EINASTO MASS INTEGRAL

From equations 11 and 14 we have that

M(r) =
∫ r

0
4πr ′2ρdm,PMII(r ′) dr′

= 4πρ−2 exp (2/αEin)
∫ r

0
r ′2 exp

[
−2
αEin

(
r ′

r−2

)αEin ]
dr′.

(A1)

Using the substitution

u =
23/αEinr ′3

α
3/αEin
Ein r3

−2

⇒ du =
3 × 23/αEin r′2

α
3/αEin
Ein r3−2

dr′ (A2)

then equation A1 becomes

M(r) =
4πρ−2 exp (2/αEin)α3/αEin

Ein r3
−2

3 × 23/αEin

×
∫ u= 23/αEin r3

α
3/αEin
Ein r3

−2

u=0
exp

(
−uαEin/3

)
du.

(A3)

Finally, using the substitution t = uαEin/3 so that dt =
αEin

3 uαEin/3−1du, then the integral in equation A3 (ignoring the con-
stant factor) becomes

3
αEin

∫ uαEin/3

0
u1−αEin/3e−tdt =

3
αEin

∫ 2rαEin
αEinr

αEin
−2

0
t3/αEin−1e−tdt

= γ
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3

αEin
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αEin

(
r

r−2

)αEin ]
,

(A4)

where the last equality follows from the definition of the incom-
plete lower Gamma function γ [a, x] =

∫ x

0 ta−1e−tdt. Including the
constant factor in equation A3 leads to the result

M(r) = 4πρ−2
αEin

exp(2/αEin)
(αEin

2

)3/αEin
γ
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3

αEin
,

2
αEin
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)αEin ]
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(A5)

APPENDIX B: DETERMINING r500 ITERATIVELY

Evaluating equations 9 and 14 at r500 and equating we get

4π
3

500ρcrit(z)r3
500 = 4πρ−21/αEin exp(2/αEin)

(αEin
2

)3/αEin
r3
−2

× γ
[

3
αEin

,
2

αEin

(
r500
r−2

)αEin ]
.

(B1)

If we let R = r500/r−2, then we can determine r500 by solving the
following for R

R3

γ
[

3
αEin

, 2
αEin

RαEin
]

− 1
ρcrit(z)

3ρ−2
500

(αEin
2

)3/αEin exp (2/αEin)
αEin

= 0

(B2)

by some iterative root-finding method e.g. Newton-Raphson. We
use the starting point R0 =

2r200
3r−2

which usually results in the
algorithm converging in O(10) iterations.

We now show that equation B2 only has one solution for a
given r−2. We start by considering both sides of equation B1 as two
different functions, and ignore constant terms for simplicity (this
does not affect the truth of the final result), i.e. we consider the two
functions

f (r500) = r3
500, g(r500) = γ

[
3

αEin
,

2
αEin

(
r500
r−2

)αEin ]
. (B3)

We first note that f (0) = g(0) = 0, and differentiate both functions
with respect to r500

d f
dr500

∝ r2
500,

dg
dr500

∝ r2
500 exp

[
− 2
αEin

((
r500
r−2

)αEin

− 1
)]
. (B4)

Setting these two derivatives equal to each other yields one solution
at r500 = r−2 for all αEin , 0, meaning the derivatives only intersect
once. Furthermore dg

dr500
tends to zero for large r500 whilst d f

dr500
is

a monotonically increasing function, meaning the former must be
larger before the two intersect. This coupledwith the fact that f (0) =
g(0) = 0 means that g(r500) > f (r500) until some point (which has
to be after the derivatives intersect) when the two intersect, after
which f (r500) > g(r500) as g(r500) flattens off. This proves that
equation B2 only has one root and that equation B1 only has one
solution in r500 for fixed r−2.
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