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Abstract—In recent years, due to the widespread usage of
various sensors action recognition is becoming more popular
in many fields such as person surveillance, human-robot in-
teraction etc. In this study, we aimed to develop an action
recognition system by using only limited accelerometer and
gyroscope data. Several deep learning methods like Convolutional
Neural Network(CNN), Long-Short Term Memory (LSTM) with
classical machine learning algorithms and their combinations
were implemented and a performance analysis was carried out.
Data balancing and data augmentation methods were applied and
accuracy rates were increased noticeably. We achieved new state-
of-the-art result on the UCI HAR dataset by 97.4% accuracy
rate with using 3 layer LSTM model. Also, we implemented
same model on collected dataset (ETEXWELD) and 99.0%
accuracy rate was obtained which means a solid contribution.
Moreover, the performance analysis is not only based on accuracy
results, but also includes precision, recall and f1-score metrics.
Additionally, a real-time application was developed by using 3
layer LSTM network for evaluating how the best model classifies
activities robustly.

Index Terms—Activity recognition, deep learning, CNN,
LSTM, data augmentation, data balancing

I. INTRODUCTION

HUMAN action recognition is a still challenging task due
to the fact that actions can be carried out by different

persons in various places. Moreover, length of time interval
can vary for same and different types of actions. Since actions
consist of sequential data, getting spatio-temporal information
from the data becomes a challenge [1].

Wearable devices have started to change our lives, such as
smartphones have changed our habits and behavior within ten
years. Wearable devices appeared to be seen in many areas
e.g. health care, fitness tracking, entertainment and they are
expected to spread rapidly in the near future. For instance;
[2] proposes to measure sweat rate by using wearable sensors.
[3] uses wearable sensors to monitor kinematic change while
doing sportive activities that require physical demands.

[4] suggests to follow up betterments of children under
rehabilitation and assess them activities that accelerate the
treatment process. [5] monitor health of user by wearable
sensors. It reviews wearable sensor usage in the mining
industry. To detect hazardous gas, to monitor brain activities
of equipment drivers, to monitor fatigue, wearable devices are
already in use. [6] commits a system to detect obstacles for
people who has lost sense of sight by wearable sensors. [7]
emphasizes the future usage of wearable devices in tourism.
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In recent years, deep learning techniques outperformed
hand-crafted feature extraction methods [8] and numerous
deep architectures were developed particularly for wearable
devices. They have great capability to extract meaningful and
high-level features from data [9].

Owing to accelerometer and gyroscope sensors are wear-
able, human actions can be recognized via these sensors [10].
These sensors are able to be integrated in textile products and
they benefit from improvements on both textile and electron-
ics’ technology [11]. Technology is used for accelerometer
based systems for different purposes [12].

This study focus on activity recognition based on state-of-
the-art deep learning methods using wearable sensors. Prod-
ucts are designed and implemented including accelerometer,
gyroscope and wireless radio frequency module called ZigBee.
Moreover, they are embedded with temperature, heart rate and
humidity sensors.

In this work, data was collected by using these sensors
at 5 Hz frequency while subjects were performing 7 dif-
ferent activities. The dataset was generated based on exper-
imental study implemented under European Union project
(ETEXWELD H2020: RISE. 644268) so that the dataset is
called as ETEXWELD dataset. In the literature, several works
have been carried out using accelerometer and gyroscope for
activity recognition and authorization. UCI HAR is the first
large dataset including daily activities of subjects which are
measured via inertial sensors in mobile phone [13]. It includes
6 different activities including “walking”, “sitting”, “standing”,
“lying”, “up-stairs” and “down-stairs”. These are similar that
we used in this project, but in this study we have also added
“falling” activity. Therefore, UCI HAR dataset is used in this
study as a benchmark dataset to compare ETEXWELD dataset
results.

In the literature, there are numerous strategies for perfor-
mance analysis on sensor based activity recognition. These
strategies are occurred by supervised, unsupervised and semi-
supervised techniques. However, this is a classification prob-
lem and we used supervised learning methods. The UCI HAR
dataset which is used as benchmark dataset is also used in
several studies [14] [15]. In these works, mostly classical
machine learning algorithms such as Support Vector Machines
(SVM) [16], k Nearest Neighbour, Linear Discriminant Anal-
ysis (LDA) [17], Multilayer Perceptron(MLP) [18] and deep
learning methods are used on this dataset.

[19] [20] recognizes daily activities by using wearable sen-
sors and additionally environmental sound with DNN (Deep
Neural Network). [21] uses S transform and Gaussian windows
to extract features of the activities but its success related with
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length of the activity which is very dataset specific. Many
studies uses kNN algorithm to classify activities on. But it is
not possible to implement to kNN to real-time applications
due to computational cost causes delay in recognition. [22]
demonstrates that using the combination of accelerometer
and gyroscope sensors together to detect human activities
properly by using feature selectors and kNN algorithm. While
classical machine learning algorithms present around 85%
accuracy, deep learning algorithms including CNN and LSTM
[23] give better result over 90s% [24]. While CNN gets
95% accuracy, [25] uses histogram of gradient (HG) and the
Fourier descriptor (FD) to extract features, kNN and SVM is
deployed for recognition. This kind of hand-crafted feature
extraction techniques requires special feature engineering for
every dataset. They achieved the latest state-of-the-art result
by 97.1% using these methods on UCI HAR dataset. But,
by using deep learning method we have found new state-
of-the-art results on UCI HAR this dataset. Moreover, we
have implemented several methods in order to compare the
results of the deep learning methods including Dynamic Time
Warping (DTW) [26] and kNN, one dimensional CNN (1D
CNN [27]), two-dimensional CNN 2D CNN [28]), 2 layer
LSTM [29], 3 layer LSTM [30], bidirectional LSTM [31],
1D CNN and LSTM on UCI HAR dataset in the paper.
Additionally, we have implemented all these methods on
ETEXWELD dataset to see comparison of result of the meth-
ods for sensor based activity recognition problems over UCI
HAR and ETEXWELD datasets.

In this study, we have worked on how to improve ac-
curacy, precision, recall and f1-score metrics [32] by using
data augmentation and data balancing methods. After using
data set balancing, we have observed much higher accuracy
and precision results. Then, data augmentation is used after
balancing as well and it also improved the results. All these
interventions are applied only on training set. During the
implementation of all methods, 10 fold cross validation was
used to check how to model optimize on training dataset.

There are several contributions to literature including orig-
inal deep learning architectures, improvement algorithms, a
new dataset, comparison of several methods in different met-
rics and improving the state of the art results on public dataset
in the content of this study. First of all, our results beat the state
of the art results on UCI HAR public dataset in the literature.
In order to achieve it, we have developed new deep learning
networks with a novel data balancing algorithm. Above all,
new dataset is designed and created for this project specifically,
but it would be used in several projects in the future. One
of the most challenging part was to create new dataset using
integrated sensors and to work on a real sampled data acquired
from those embedded sensors. It is not possible to collect
thousands samples data from different subjects. Therefore, data
augmentation approach within the study was also designed
to improve generalization ability of the models. It is one of
the novel step as well, because of improvement the results
and being unique. For the recognition, scratch deep learning
and machine learning algorithms which are used on both
datasets were deployed. Finally, the comparisons of several
learning methods for each dataset are shown from the aspects

of accuracy, precision, recall, time and space consumption.

II. DESIGN ARCHITECTURE OF SENSORS EMBEDDED TO A
TEXTILE STRUCTURE

End-to-end system design including the human, sensors,
monitoring, and communication modules integrated to textile
products is shown in Fig. 1. Several setups occurred by
electronic modules and flexible covering band for various
parts of the body are prepared as seen in Fig. 2. However,
in this study, only chest module is used, because [33] shows
that chest is the best position to place just a single wearable
device to distinguish human activities. Therefore, just a single
wearable device placed to the chest with its covering band and
all activities were performed by this setup. Wearable sensor
device can be seen on the chest clearly in Fig. 3.

All data from each sensor is tracked via a desktop applica-
tion as shown in Fig. 4. Some of the activities such as walking,
falling, upstairs and jogging also could be seen in Fig. 5.

Figure 1: End to end system activity recognition system
overview

Figure 2: (a) single electronic device including all sensors; (b)
couple of prototypes integrated on flexible band

III. DATASETS

In the scope of this study, there are two similar datasets
including UCI HAR [13] benchmark dataset and ETEXWELD
dataset. Both are created for activity recognition via ac-
celerometer and gyroscope sensors. These datasets include
data for the actions of “walking”, “sitting”, “lying”, “stand-
ing”, “up-stairs” and “down-stairs”. Despite these datasets
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Figure 3: Wearable sensors on human physical body. (a) An early test with the experiment environment. (b) A snapshot from
the data collection phase.

Figure 4: A view of the sensor tracker application on desktop

Figure 5: Different actions including walking, falling,upstairs
and jogging

have similarities, there are also differences including sampling
rate, number of actions and hardware platforms.

Firstly, while UCI HAR dataset has 50 Hz sampling rate,
ETEXWELD dataset has 5 Hz sampling rate, which is highly
challenging to detect activities. Requirement of a low sampling
rate comes from the power consumption constraint of the
system. Therefore, sampling rate and number of the samples
are less in ETEXWELD dataset.

Secondly, while UCI HAR dataset has 6 different actions,
ETEXWELD dataset has 7 different activities with extra added
“falling” and “jogging” actions and discarded "sitting" action.
Because these activities are more related to our user stories.

Finally, although first dataset is collected from the ac-
celerometer and gyroscope sensors of a mobile device,

ETEXWELD dataset is required since the new hardware plat-
form is a custom hardware board with different accelerometer
and gyroscope sensors. Table 1 shows all physical activities
in the scope of the project and the number of collected data
samples. As seen on the Table 1, we can consider this as a
small size dataset and some activities has much more samples
compare to the others.

In order to make dataset balanced, data augmentation al-
gorithms have been implemented and a comparison between
these different type of datasets has been made.

Table I: Collected data per classes for ETexWeld dataset with
the number of samples

Action Number of Sample
Walking 10000
Jogging 9000
Lying 8000
Standing 8000
Falling 1000
Up-stairs 5000
Down-stairs 5000

IV. THE DESIGN OF THE AUTOMATION SYSTEM

The automated system is managed by data collection, pre-
processing with data augmentation, machine learning algo-
rithms and real time application.

A. Data Acquisition
The data is collected with an automation system that uses

ZigBee module on both clothing architecture and ground
station. This module works with 2.4 GHz frequency and
transmission distance is between 10 and 20 m for indoor envi-
ronment, up to 200 m for outdoor environment. For instance,
Fig. 6 and Fig. 7 shows the collected data based on 3-axis
accelerometer and 3-axis gyroscope, respectively. 7 different
activities were carried out by 10 different subjects during data
acquisition. Volunteers consist of 5 male and 5 female aged
between 22 and 40 years. All experiments were conducted
with the consent of the persons. After data acquisition, this
collected data should be pre-processed in order to apply deep
learning algorithms.
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Figure 6: A capture of accelerometer data during walking
action

Figure 7: A capture of gyroscope data during walking action

B. Data Preparation

Data preparation is done by preprocessing, data balancing
and data augmentation. Pre-processing includes parsing the
data into the format of input shape for each model with 15%
to get samples throughout activity. Also, it separates the dataset
into train and test data as shown in Fig. 8. Train set consist of
3 males and 3 females subjects and it corresponds 75% of the
whole dataset. Other remaining 25% part which consist of 2
males and 2 females subjects which is completely different
from train dataset was left as test set to determine model
performance.

The distribution of activities in native train and test subsets
are shown in Fig. 9.

As it is seen in Fig. 8, the native data set has unbalanced
distribution for both train and test data sets. Because of the
unbalanced number of collected samples for different actions,
we have faced with high accuracy but low precision. In order
to improve precision, data balancing algorithms were used.
Sufficiency is based on random stop. The only thing we
considered before stop the balancing that any proportion of
number of any action should be less than 2.

After balancing, the number of samples are increased seen
in Fig. 10.

Figure 8: Preparing native dataset by filtering raw data and
seperating into native train and test datasets.

Figure 9: Native train and test dataset which is generated from
collected dataset

Figure 10: Sufficiently balanced train dataset
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Algorithm 1 Data Augmentation Algorithm

1: procedure AUGMENTDATA(Data,n,m)
2: NewData← data
3: randomness← Random(1,n)
4: NewData← RandomShi f t(r, data)
5: randomness← Random(1,m)
6: NewData← AddRandomNoise(rndmnss,NewData)

Algorithm 2 Balancing Dataset Algorithm

1: procedure BALANCE(Data,n,m)
2: randomness← Random(1,n)
3: for action ∈ Dataset.actions do
4: if action.len ∗ 2 > maxAction then
5: Continue
6: if action.len ∗ 2 < maxAction then
7: realSample← getDtFrmT ht Action(action)
8: for i <= randomness do
9: newSample← AugmntDt(realSample,n,m)

The core code of balancing algorithm is also used in data
augmentation. The data augmentation step was necessary due
to the lack of sampled data for each action. The idea behind
this augmentation algorithm is after taking any real data for
any action, we would like to create similar data to improve
our dataset. In order to do that, we add noise to raw data
and shift it randomly left and right. While determining the
noise and shifting amount, the correlation matrix was taken
into account. For each action correlation matrices have been
created in order to keep the similarity level of each action type
in collected dataset. The correlation matrix for balanced and
native train dataset can be seen in Fig. 11. The higher level
pseudo-code is shown in Algorithm 1 and Algorithm 2.

Figure 11: (a) Cross correlation matrix of each sensor signal
in balanced train dataset; (b) in native train dataset

After balancing and augmentation of the dataset, the similar
values in correlation matrices were observed. This was our
benchmark during the determining randomness border on
balancing and augmentation. The distribution of augmented
dataset is shown in Fig. 12.

C. Creation of Deep Learning Models

The research problem in this study is handled as a super-
vised classification process. All of the evaluated supervised
deep learning [34] methods in this study are trained and tested
as seen in Fig. 13 and Fig. 14.

Figure 12: Augmented dataset over balanced dataset

Figure 13: General training process for these machine learning
approaches

Figure 14: General testing process of any trained model

These methods are 1D CNN, 2D CNN, 2 Layer LSTM
[30], 3 Layer LSTM, Bi-directional LSTM, 1D CNN+LSTM.
Each network is designed and implemented with a unique
architecture and is trained from scratch. In addition to these
state-of-the-art deep learning methods, DTW+kNN is also
implemented with the parameter k equals to 5. Moreover, all
methods were applied on both UCI HAR dataset and newly
created dataset.

D. CNN Models

Convolutional neural network (CNN) is applied through
signal data to extract features automatically and to classify [35]
[36]. CNNs have capabilities to consider both dependencies
in both time and signal dimensions. Weight sharing in CNN
improves the recognition performance while decreasing the
number of trainable weights. We used two different type of
CNN models. Algorithm 3 shows general algorithm for CNN
models.

1D CNN Model: Input for 1D CNN from scratch model
is 1x90 vectors. Consecutive samples of accelerometer and
gyroscope data is ordered by 1D vector. For feature extraction
task, architecture consists of 2 convolution layers with 2x1
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Algorithm 3 CNN Models

1: procedure TRAINING(Activity,Parameters)
2: for all activities do
3: PreProcessing
4: Construct Activities
5: while k ≤ Total Activities do
6: Activity(k) ← Convolutions
7: Activity(k) ← MaxPooling
8: Activity(k) ← Classi f ier
9: Loss← TrueActivity − Activity(k)

10: return Error

1x90

1x45

32

1x45

32

1440

100

7

1. Convolutional Layer

2. Convolutional Layer

Fully Connected
and Output Layers 

Input

Figure 15: 1D CNN model for activity classification. Input
consist of consecutive samples.

kernels, stride 2 and 1x1 kernels and stride 1, respectively. 32
different filters is used for all layers. After this step 1x1440
flattened feature vector is obtained. For classification, this
features is fed to a fully connected layers which consist of
100 neurons with RELU activation function. To determine
activity class, an output layer is deployed which consist of
7 neurons with softmax activation function. Learning rate is
determined 0.01 and optimization method is chosen Stochastic
Gradient Decent with categorical cross-entropy loss function.
After 250 epochs 10 fold-cross-validation presented the best
performance. Fig. 15 shows 1D CNN model.

2D CNN Model: Before being fed to 2D CNN, the data
were converted into image format. When we consider the
image as a matrix, 3 coordinates of accelerometer value
comes to first 3 column and gyroscope value comes to next 3
column, respectively. Row by row, every sample is arranged
horizontally throughout until the activity ends. Every activity
is carried out within 3 seconds. Data input is 15x6 activity map
for both model. In 1D model, convolution operator works on
just one time sample instead of other in 2D model. Notice

that the kernel height is responsible for extracting temporal
patterns while the kernel width extracts the correlation between
neighboring axes.

Scratch model consists of 2 convolution layers, 1 max-
pooling layer, 1 fully connected layer and 2 dropout layers.
Learning rate was chosen 0.0001 and Adam [37] optimization

method is used for learning weights. Data was fed into
groups of 24 batches and the highest performance was
achieved with 10 fold cross-validation as a result of 300
iterations.

To learn relations between features, 1000 neurons were
used in hidden layer for classification. There is no pre-
trained network for training with less effort. So, we developed
completely from scratch network. Fig. 16 shows 2D CNN
network model.

E. LSTM Models

There are plenty studies that take advantage of interpreting
capability of sequential data for activity recognition by using
wearables [38] [39]. When implementing LSTM models, most
commonly used architecture is described in [9]. A LSTM
memory block consist of three gates: an input gate (i), a forget
gate ( f ), and an output gate (o), which overwrite, keep, or
retrieve the memory from the memory cell (c) at the time t.

Firstly, input gate (it ) and forget gates ( ft ) are computed by
following equations:

it = sigm(Wi · xt + Hi · ht−1 + Ci · ct−1 + bi) (1)

ft = sigm(W f · xt + Hf · ht−1 + Cf · ct−1 + b f ) (2)

Afterwards, by using an amount of the previous contents
(ct−1), the current memory cell (ct ) is updated for forgetting
and the new memory (c̃) for including. They can be calculated
by following equations:

c̃t = tanh(Wc̃ · xt + Hc̃ · ht−1 + bc̃), (3)

ct = ft } ct−1 + it } c̃t, (4)

Finally, the final activation at the current position (ht ) is
calculated with the output gate (ot ) which regulates the amount
of information to output.

ot = sigm(Wo · xt + Ho · ht−1 + Co · ct + bo) (5)

ht = ot } tanh(ct ) (6)

x, i, f , c̃, c, o, h ∈ RT , where T is the length of the input.
xt is the input activation at the current time (t), and ht−1 is
the output activations from the past time (t−1). W , H, and C
are weight matrices for input to gates, recurrent connections,
and cell to gates.

In the study of Zebin at al. [40] only 6 different activities
were classified with 2 layered LSTM Network. In our work,
beside that two different layered LSTM Network, Bidirectional
LSTM Network [41] is also used. Standard LSTM network
have restrictions as the future input information cannot be
reached from the current state. On the contrary, bidirectional
LSTM network do not require its input data as the same
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Activity Class

Convolutional Layer 1
Max-Pooling Layer 1

8 x 3 x 32 15 x 6 x 32 
8 x 3 x 32 

1000

7

Convolutional Layer 2 15 x 6  Activity Map

Accelerometer and
Gyroscope Data

Dropout(0.2) Dropout(0.2)

Figure 16: 2D CNN model for classification task. Input consist of 3 seconds length activities ordered by rows.

Figure 17: Overall scheme of LSTM models with different
number of hidden layers

dimension. Moreover, their future input information can be
reached from the current state. The main idea of Bidirectional
LSTM is to connect two hidden layers of opposite directions
to the same output. By this structure, the output layer can
access information from past and future states and interprets
better.

After pre-processing step, data should be converted to fixed
form for feeding LSTM network model. Data constructed
with appropriate dimensions are fed to the successive LSTM
blocks with vectors formed by 32 batches. Overall flow
chart of the LSTM model is seen in Fig. 16 with different
number of hidden layers. To understand sequential relationship
between spatio-temporal data, window size and overlap rate
hyperparameters are very important and were selected as 32
and 50%, respectively. 2 and 3 layers LSTM models have
been deployed for two different experiments. Every layer in
the network consist of 32 neurons. In experiments, 10-fold
cross-validation, 0.0025 learning rate, 0.0015 loss account
coefficient and 15 epochs are the common hyper-parameters
for both LSTM models. Binary cross-entropy optimization has
been determined as the optimization method. The dropout
layer is applied with 20% probability to prevent overfitting.
Bidirectional LSTM network model consists of 2 hidden layer
that includes 100 and 32 hidden layer, seperately.

Bidirectional LSTM network model consists of 2 hidden
layer that includes of 100 and 32 hidden layer, seperately.
Fig. 17 shows general LSTM model with different number of
hidden layers.

1. Convolutional
Layer 

2. Convolutional
Layer

1. Max-Pooling
Layer

2. Max-Pooling
Layer

3 Layer LSTM
NetworkActivity Class

Feature Extractor

Classifier

Figure 18: Hybrid model that uses CNN as a feature extractor
and LSTM for classification.

F. Hybrid Models

CNN + LSTM Model: In this model, CNN and LSTM
models took part for the recognition task as a hybrid model.
At first, 1D CNN was used in different time steps as a feature
extractor. After implementing 2 convolutional layer that each
of them have 64 filter maps and 2 max pooling layer with
stride 2, 1536 features were obtained. For classification task
3 LSTM layer that every hidden layer consist of 128 neurons
was deployed. To get sequential relationship between samples
and time intervals, data was fed to network as 1x124 vectors.
Adam [37] optimization method was used and categorical
cross-entropy selected as a loss function during training. Fig.
18 illustrate overall scheme of the model.

KNN + DTW Model: [42] used KNN algorithm for
UCI dataset. Although KNN is classical machine learning
algorithm for classification, it is very simple and effective.
It is very important to determine optimal k value which has a
great role in terms of classification accuracy. Algorithm was
run with different k values and was chosen as 4 for best
performance. DTW [43] used to calculate similarity between
two temporal sequences and combined with KNN algorithm
for classification task. It finds optimum mapping by using
minimum distance between arbitrary length signal samples
rather than just customary calculating Euclidean distance as
a similarity measure criteria in KNN algorithm.Equation 8
shows how minimum distance calculation using Euclidean
distance formula in Equation 7. Here, Euclidean distance was
used with neighbourhood of k = 4 nearest training samples
with the initial condition D(1,1) =| t(1) − r(1) |.
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DEuclidean(x, y) =

√√√
k∑
i=1
(xi − yi)2 (7)

D(i, j) =| t(i) − r( j) | +min

{ D(i-1,j)
D(i-1,j-1)
D(i,j-1)

}
(8)

G. Real-time Application

In the work carried out, one real-time desktop application
which uses the deep learning method as an analyzer was
implemented to track fire-fighters activity. Interface of the
application can be seen on Fig. 19.

Figure 19: Real time desktop application captures walking and
running activities which determined by the machine learning
algorithms.

V. EXPERIMENTAL TEST RESULTS

All results were obtained using the same hardware cir-
cumstance that involves Intel i7 2.6 GHz CPU, 8 GB RAM
and without GPU. All software is implemented using Python
programming language and Tensorflow library. After preparing
the data, all deep learning methods on datasets were tested. In
order to test it, several considerations and comparison criteria
were evaluated. These criteria are based on popular evaluation
metrics including precision, recall, f1-score and accuracy. All

these metrics are based on the true and false results and
their real values. They are called true negative (TN), true
positive(TF), false negative (FN) and false positive(FP). TP is
an outcome where the model correctly predicts the positive
class while TN is an outcome where the model correctly
predicts the negative class. FP, a false positive, is an outcome
where the model incorrectly predicts the positive class and
a false negative is an outcome where the model incorrectly
predicts the negative class. These outcomes help to calculate
metrics as shown on Table 2.

Table II: Evaluation metrics for classification which are used
in this work.

Metric Calculation
Accuracy (TP+TN)/(TP+FP+FN+TN)
Precision TP / (TP + FP)
Recall TP/(TP+FP)
F1 score 2*TP/(2*TP+FP+FN)

Training time and number of updating parameters are also
measured for time and space consumption in algorithm com-
parisons. Training time do not effect accuracy rate. But if
there is big amount of data, training procedure cost much
more computation time. All of the deep learning networks
that designed were tested on two different datasets including
UCI HAR and ETEXWELD dataset. On UCI HAR dataset,
two different approach was deployed. Firstly, experiments
were carried out by using just accelerometer and gyroscope
data. Then, another experiments, accelerometer, gyroscope
and total data consist of accelerometer and gyroscope data
together were used. Moreover, ETEXWELD dataset is used in
three different training set forms which are native, balanced
and augmented. The most important metric in this study is
accuracy. Comparative results which based on accuracy are
obtained on the UCI HAR and ETEXWELD dataset. For UCI
HAR dataset when only accelerometer and gyroscope is used,
accuracy results, time and space consumption points of view
are shown on the Table 3. It is empirically observed the most
accurate model is 3 Layer LSTM with 93%.

Table III: Test accuracy, time and space consumptions during
training on UCI HAR dataset (accelerometer and gyroscope
only) for each machine learning model

Models UCI HAR Test
Accuracy (%)

Training
Time
(minutes)

Updated
Parameters

DTW + kNN 65 185 -
1D CNN 76 90 23,460
2D CNN 85 132 7,314,270
2 Layer LSTM 91 15 202, 146
3 Layer LSTM 93 20 362,342
Bi-directional
LSTM

77 121 362,342

1D CNN+ LSTM 76 30 1,208,106

There is also one more parameter comes with UCI HAR
dataset called "total". After adding this input into training
model, the results are summarized in Table 4. As it is seen,
the accuracy was improved and new state-of-the-art result was
obtained with 93.7% accuracy rate.
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Table IV: Test accuracy, time and space consumption during
training on UCI HAR dataset for each machine learning model

Models UCI HAR Test
Accuracy (%)

Training Time
(minutes)

Updated
Parameters

DTW + kNN 69.1 250 -
1D CNN 76.3 125 23,460
2D CNN 85.2 200 7,314,270
2 Layer LSTM 93.7 22 202, 146
3 Layer LSTM 97.4 20 362,342
Bi-directional
LSTM

90.3 140 362,342

1D CNN + LSTM 88.5 45 1,208,106

The same approach was also implemented to ETEXWELD
train dataset. Results of native test accuracies are given in
Table 5.

Table V: Native ETEXWELD data test result for accuracy,
time and space

Models ETEXWELD
Test Accuracy
(%)

Training
Time
(minutes)

Updated Pa-
rameters

DTW + kNN 72 <1 -
1D CNN 77 1 9,255
2D CNN 81 8 840,295
2 Layer LSTM 95 1.5 12,124
3 LAyer LSTM 96 2 21,863
Bi-directional
LSTM

86 6 21,863

1D CNN + LSTM 78 10 123,843

As it is seen in Table 5 from accuracy point of view, the best
result was obtained with 3 Layer LSTM. However, accuracy
may not be enough to determine whether the model is good or
not. Therefore, precision, recall, f1-score and support metrics
for 3-Layer LSTM have been also checked in Table 6.

Table VI: Precision, recall and F1 score metrics for each
activity in 3 layer LSTM model which is occurred by native
ETEXWELD dataset

Metrics falling standing up-
stairs

down-
stairs

walking lying jogging

Precision0 0.88 0.50 0.45 0.77 0.98 0.86
Recall 0 0.81 0.44 0.55 0.84 0.99 0.90
F1-
Score

0 0.85 0.47 0.50 0.81 0.98 0.88

While accuracy is relatively high, the precision, recall and
f1-score are very low for several activities. When we examine
the results, it is observed that, lower precision results are also
small sampled activities. The reason of this low precision is
that of unbalancing dataset that is trained. Confusion matrix
of test results by using 3 layer LSTM model which trained
with native dataset can be seen on Fig. 20.

In order to solve this problem, the data augmentation
and dataset balancing have been done. After the balancing
process, balanced train set for all machine learning methods
is again used. As it is seen in the Table 7, accuracy is highly
improved for all machine learning models and again, the best
performance was obtained with 3 layer LSTM as before.

After this observation, other parameters in balanced dataset
training model were re-checked. As given in Table 8, there is
an important improvement.

Figure 20: Normalized confusion matrix shows test results in
3 Layer LSTM model which is trained with native dataset.

Table VII: Balanced ETEXWELD data test result for accuracy,
time and space

Models Accuracy
(%)

Training Time
(minutes)

Updated Parame-
ters

DTW + kNN 93 20 -
1D CNN 94 70 9,255
2D CNN 96 130 840,295
2 Layer LSTM 97 130 12,124
3 Layer LSTM 98 150 21,863
Bi-directional
LSTM

92 270 21,863

1D CNN + LSTM 89 300 123,843

Table VIII: Precision, recall and F1 score metrics for each
activity in 3 layer LSTM model which is occurred by balanced
ETEXWELD dataset

Metrics falling standingup-
stairs

down-
stairs

walking lying jogging

Precision0.90 0.90 0.67 0.84 1.00 0.99 0.96
Recall 1.00 0.97 0.97 1.00 0.81 0.99 0.87
F1-
Score

0.95 0.93 0.78 0.91 0.89 0.99 0.91

It could be also clearly seen in confusion matrix how much
it is improved with balanced data in Fig. 21.

After this big improvement on not only accuracy, but also
precision, recall and f1-score, the dataset and model became
more trustful.

Training process results on balanced data is also followed on
epochs for 3 layer LSTM model. Accuracy and loss chances
could be seen for both train and test set as well in Fig. 22.

In addition to this balancing, all models have been tested
on the augmented dataset to see how data augmentation is
effecting classification accuracy and the accuracy results on
all models is seen in Table 9 and also confusion matrix can
be seen in Fig. 23.

The improvement on the accuracy still exists, although
it is very small. The training time is increased because of
increasing iteration number. Other metrics also examined with
augmented data in Table 10.
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Figure 21: Normalized confusion matrix shows test results in
3 Layer LSTM model which is trained with balanced dataset.

Figure 22: Train and test accuracy and loss change during each
epoch for 3 layer LSTM model on balanced dataset

Table IX: Augmented ETEXWELD data test result for accu-
racy, time and space

Models Accuracy
(%)

Training Time
(minutes)

Updated
Parameters

DTW + kNN 94 60 -
1D CNN 94 140 9,255
2D CNN 96 200 840,295
2 Layer LSTM 97 190 12,124
3 Layer LSTM 99 330 21,863
Bi-directional
LSTM

93 370 21,863

1D CNN + LSTM 90 380 123,843

Figure 23: Normalized confusion matrix shows test results in
3 Layer LSTM model which is trained with augmented dataset
after balancing.

Table X: Precision, recall and F1 score metrics for each activ-
ity in 3 layer LSTM model which is occurred by augmented
ETEXWELD dataset after balancing

Met-
rics

falling stand-
ing

up-
stairs

down-
stairs

walk-
ing

ly-
ing

jog-
ging

Preci-
sion

0.90 0.80 0.84 0.90 0.81 1.00 0.88

Recall 1.00 0.86 0.97 0.88 0.76 0.84 0.60
F1
Score

0.94 0.83 0.89 0.90 0.79 0.91 0.70

VI. CONCLUSION

In this study, a unique dataset based on real experiments
acquired from wearable devices was used for human activity
recognition. We have achieved state-of-the-art results with two
different data set with using deep learning techniques including
from scratch trained and designed CNN and LSTM networks.
It is proven that 3-Layer LSTM model is the best solution
for sensor-based activity recognition problems in real time
applications particularly for wearable devices. Additionally,
kNN may not be an efficient option for classification of
activities for big datasets like UCI HAR because of lower
accuracy rate and computational cost. Therefore, we contribute
to the literature while showing the comparison of different
deep learning results according to accuracy, time and space
complexity. Moreover, we have shown that the data augmen-
tation on small size datasets and balancing for the unbalanced
dataset are critical in order to obtain higher scores. They do
not only improve test accuracy but also improve other metrics
such as precision, recall and f1-score dramatically. In order
to achieve that, we have design and implement our original
algorithms for time series sensory data specifically as one
of the novel steps. This study can be implemented to detect
activities of firefighters to determine their health condition and
performances. In future studies, it is planning to use multiple
sensors and recognize more complicated activities.
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