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Abstract

We apply the method of time-dependent rescalings which has been
developed by G. Rein and the author to a model kinetic equation, to
the Euler equations for a perfect polytropic gas and to a model with
friction and heat transfer. We build Lyapunov functionals which are in
the case of the fluid models improved versions of the estimates which
have been found by J.-Y. Chemin and D. Serre (see [2], [14]).

1 Introduction

In this paper, we present on some new examples a method which has been
developed by the author and G. Rein (see [7]) to build Lyapunov functionals
and to study dispersion effects in kinetic theory and related models. The
main idea is to make a time-dependent rescaling of the system which pre-
serves the structure of the equation but adds a confining harmonic force
which transforms asymptotically self-similar solutions of the initial problem
into asymptotically stationary solutions of the rescaled problem, even if self-
similar solutions are not well defined, for at least the corresponding initial
data. The preservation of the L1-norm by this rescaling introduces a friction
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term which decreases the energy of the rescaled system and is therefore a
Lyapunov functional of the original system. This Lyapunov functional may
be used directly to measure the dispersion effects, or by the means of an
interpolation between a moment and an Lp-norm (with p>1), or even the
entropy (see [6] in the case of the Boltzmann equation and other models with
a collision term).

Actually, one can reinterpret the Lyapunov functional (or at least the
term which comes out from the rescaled kinetic energy) as a measure of the

dispersion around an average velocity Ṙ
R
x which decays to 0 for any fixed

x∈ IRd as t→+∞, and a direct computation allows us to find the expression
of R(t) and the corresponding decay. The fact that the average velocity
decays to 0 might be surprising at first sight but it essentially means that
the velocity of the particles remaining in a fixed bounded region for large
times is small.

The time dependent rescaling considered in [7] and in this paper has the
interesting property that it does not introduce any singularity at t=0: the
initial data for the rescaled problem can be choosen to be the same as for
the unscaled system. The rescaled equation therefore connects the initial
data to a stationary solution – when the solution converges – which is the
asymptotic dispersion profile or, in the language of parabolic equations, the
”intermediate asymptotics” (see [3] for the use of entropy methods in the
context of porous media and fast diffusion equations).

The purpose of this paper is to present a general method – which seems
very efficient in the context of kinetic equations and fluid dynamics – for get-
ting estimates, more than to give new results, which were already known (up
to minor improvements), especially in the context of Euler or Navier Stokes
equations (see for instance the papers [2] and [14] by J.-Y. Chemin and D.
Serre). The fact that similar methods apply in kinetic theory, fluid dynam-
ics and quantum physics is now well known (see [9], [10], [11], [12], [13] for
instance). Since we are only looking for a priori estimates, the computations
will be done in the context of classical solutions, which are supposed to exist
globally in time, and we will not give further justifications to the integra-
tions by parts. The method may be applied to other equations, for instance
to nonlinear Schrödinger equations or even parabolic equations, but we will
not insist here on these aspects and refer to [7] or [3] for further comments
on this aspect of the question.
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2 Nonlinear Vlasov equation

Consider the nonlinear Vlasov equation

∂tf +v ·∂xf −∂x(ρ
γ−1) ·∂vf =0,

ρ(t,x)=
∫

IRd
f(t,x,v)dv,

t>0, (x,v)∈ IR2d, which has been studied for instance by I. Gasser, P.
Markowich and B. Perthame in [8]. This nonlocal equation provides a very
simple example to study the dispersion effects in kinetic theory. As in [7],
we may consider the change of variables

dt=A2(t)dτ, x=R(t)ξ, η =
A2(t)

R(t)

(

v−
Ṙ(t)

R(t)
x

)

If F and ν are respectively the rescaled distribution function and the spatial
density in the rescaled variables:

f(t,x,v)=G(t)F (τ,ξ,η), ρ(t,x)=
GRd

A2d
ν(τ,ξ),

then they satisfy the equation

∂τF+ η ·∂ξF +2A2

(

Ȧ

A
−

Ṙ

R

)

η ·∂ηF

−R̈
A4

R
ξ ·∂ηF −

A4

R2

(

GRd

A2d

)γ−1

∂ξ(ν
γ−1) ·∂ηF +A2 Ġ

G
F =0.

The invariance of the L1-norm by the change of variables – or equivalently
the fact that the terms

A2 Ġ

G
F +2A2

(

Ȧ

A
−

Ṙ

R

)

η ·∂ηF

can be factorized into a term of the form ∂η(ηF ) – is given by the condition

G=(
A

R
)2d.
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If the coefficients of the harmonic force term and of the nonlinear term are
constant in time (which in other words means that one chooses the asymp-
totic time dependent scale in x which preserves the structure of the equation
and such that stationary states may exist), then

A4R̈

R
=1 and

A4

R2

(

GRd

A2d

)γ−1

=1

(it is not restrictive to choose the constants to be equal to 1). This can be
solved into

R̈=R−[(γ−1)d+1],

A=R
1
4
[(γ−1)d+2],

dτ

dt
=R−

1
2
(γ−1)d−1, G=R

d
2
[(γ−1)d−2],

and the equation for F is now

∂τF +η ·∂ξF −ξ ·∂ηF −∂ξ(ν
γ−1) ·∂ηF =

1

2
[(γ−1)d−2]R

(γ−1)d
2 Ṙ∂η(ηF ).

Note that we may choose R(0)=1, Ṙ(0)=0 and τ(0)=0:

F (0,ξ,η)=f(0,ξ,η)

for any (ξ,η)∈ IR2d. If γ >1, the solution of R̈=R−[(γ−1)d+1] satisfies R(t)∼ t

as t→+∞.
An easy computation shows that the energy L(t) given by

L(t)=
1

2

∫ ∫

IRd
×IRd

(|η|2 + |ξ|2)F (τ(t),ξ,η)dηdξ

+
1

γ

∫

IRd
νγ(τ(t),ξ)dξ

=R(γ−1)d(t)
[

1

2

∫ ∫

IRd
×IRd

∣

∣

∣

∣

∣

v−
Ṙ

R
x

∣

∣

∣

∣

∣

2

f(t,x,v)dvdx+
1

γ

∫

IRd
ργ(t,x)dx

]

+
1

2R2(t)

∫

IRd
|x|2ρ(t,x)dx

satisfies

dL

dt
(t)= [(γ−1)d−2]

Ṙ

R

∫ ∫

IRd
×IRd

|η|2

2
F (τ(t),ξ,η)dηdξ

which provides the following decay estimates
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Theorem 2.1 Assume that γ∈]1,1+ 2
d
[. Consider a nonnegative solu-

tion f ∈C0(IR+,L1(IRd×IRd) corresponding to an inital datum f0 such
that (x,v) 7→f(x,v)(|x|2 + |v|2) and x 7→

∫

IRd f0(x,v)dv belong to L1(IR2d) and
L1(IRd) respectively. Then

t 7→R(γ−1)d(t)
[

1

2

∫ ∫

IRd
×IRd

∣

∣

∣

∣

∣

v−
Ṙ

R
x

∣

∣

∣

∣

∣

2

f(t,x,v)dvdx+
1

γ

∫

IRd
ργ(t,x)dx

]

+
1

2R2(t)

∫

IRd
|x|2ρ(t,x)dx (2.1)

with R̈=R−[(γ−1)d+1], R(0)=1, Ṙ(0)=0, is decreasing.

Remark 2.2 Given any L∞(IR+,Lp(IR2d)) bound on f , it is easy to ob-
tain other decay estimates by the interpolation of the Lq(IRd) norm of ρ(t,.)

between ‖f(t,.,.)‖Lp(IR2d) and
∫∫

IRd
×IRd

∣

∣

∣v− Ṙ
R
x
∣

∣

∣

2
f(t,x,v)dvdx: there exists a

constant C >0 such that

‖ρ(t,.)‖Lq(IRd)≤C

(

‖f(t,.,.)‖Lp(IR2d)

)1−θ(∫ ∫

IRd
×IRd

∣

∣

∣

∣

∣

v−
Ṙ

R
x

∣

∣

∣

∣

∣

2

f(t,x,v)dvdx

)θ

provided 1
q
=d1−θ

p
+(d+2)θ and 1= 1−θ

p
+θ (these coefficients are easily re-

covered with a scaling argument). As a consequence

‖ρ(t,.)‖Lq(IRd) =O(t−θ(γ−1)d).

Remark 2.3 Consider the change of variables (t,x,v) 7→ (t,x,η =v− Ṙ
R
x).

F̃ (t,x,η)=f(t,x,v) is a solution of

∂tF̃ +η ·∂xF̃ −
R̈

R
x ·∂ηF̃ −∂x(ρ

γ−1) ·∂ηF̃ +
Ṙ

R
[∂x(xF̃ )−∂η(ηF̃ )]=0

and we may recover Equation (2.1) as follows: the energy associated to the
equation for F̃

E(t)=
∫ ∫

IRd
×IRd

F̃ (t,x,η)
|η|2

2
dxdη

+
R̈

R

∫ ∫

IRd
×IRd

F̃ (t,x,η)
|x|2

2
dxdη+

1

γ

∫

IRd
ργ(t,x)dx
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is such that

dE

dt
(t)= −2

Ṙ

R

∫ ∫

IRd
×IRd

F̃ (t,x,η)
|η|2

2
dxdη

+(
d

dt
(
R̈

R
)+2

R̈

R

Ṙ

R
)
∫ ∫

IRd
×IRd

F̃ (t,x,η)
|x|2

2
dxdη

−
d(γ−1)

γ

Ṙ

R

∫

IRd
ργ(t,x)dx ,

and if we write
d

dt

(

Rq(t)E(t)
)

≤0,

we recover Equation (2.1) provided

q =min(2,(γ−1)d) and R̈=Rp with p≤−(q+1).

3 Euler Equations for a perfect compressible

fluid

In [7], it has been noticed that estimates for fluid equations can be obtained in
a similar way using Remark 2.3 and the case of an Euler equation with a pres-
sure given by p(t,x)=ργ(t,x) has been analyzed, providing exactly the same
kind of results as the nonlinear Vlasov equation, at least for ‖ρ(t,.)‖Lγ (IRd)

bounded.
One has to mention that the close analogy of the dispersion estimates in

kinetic theory and in fluid dynamics has been noticed for instance in [13].
This analogy is still true if one interprets the Lyapunov functional as the
energy after a time-dependent rescaling, and that is what is investigated
here.

We will focus our attention on more realistic models than the nonlinear
Vlasov equation and begin with the Euler equations for a perfect polytropic
gas

∂tρ+divx(ρu)=0, (3.1)

∂t(ρu)+divx(ρu⊗u)+∇xp=0, (3.2)

∂t(
1

2
ρ|u|2+ρe)+divx

(

(
1

2
ρ|u|2+ρe+p)u

)

=0 (3.3)
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where the pressure is given by the law

p=(γ−1)ρe. (3.4)

The system has been studied by D. Serre (see [14]) and one of the main tools
was the computation of dispersion estimates. We shall give here a slightly
improved version of these dispersion estimates. Note that these estimates are
sufficient to prove the global existence of a solution corresponding to a small
initial data, even if larger solutions are known to have a finite existence time
interval only (see [14], [15]).

Exactly as in Remark 2.3, we may consider a new velocity variable

η(t,x)=u(t,x)−
Ṙ(t)

R(t)
x.

Equations (3.1) and (3.2) are transformed into

∂tρ+divx

(

ρ(η+
Ṙ

R
x)
)

=0, (3.5)

∂t(ρη)=
Ṙ

R
divx

(

ρ(η+
Ṙ

R
x)
)

x+(
Ṙ2

R2
−

R̈

R
)(xρ)−divx(ρu⊗u)−∇xp. (3.6)

Let

E(t)=
1

2

∫

IRd
ρ(t,x)|η(t,x)|2 dx+

∫

IRd
ρ(t,x)e(t,x) dx+A(t)

∫

IRd
ρ(t,x)|x|2 dx

According to Equation (3.3),

d

dt

[

1

2

∫

IRd
ρ(t,x)|u(t,x)|2 dx+

∫

IRd
ρ(t,x)e(t,x) dx

]

=0

dE

dt
(t)=

1

2

d

dt

(
∫

IRd
ρ(t,x)|η(t,x)|2 dx−

∫

IRd
ρ(t,x)|η(t,x)+

Ṙ

R
x|2 dx

)

+
d

dt

(

A(t)
∫

IRd
ρ(t,x)|x|2 dx

)

=
d

dt

∫

IRd

(

(A−
1

2

Ṙ2

R2
)|x|2−

Ṙ

R
η ·x

)

ρ(t,x)dx

=(Ȧ−
ṘR̈

R2
+

Ṙ3

R3
)
∫

IRd
ρ(t,x)|x|2 dx−(

R̈

R
−

Ṙ2

R2
)
∫

IRd
ρ(t,x)η ·xdx

+(A−
1

2

Ṙ2

R2
)
∫

IRd
|x|2∂tρ(t,x)dx−

Ṙ

R

∫

IRd
x ·∂t(ρη)dx
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Using Equations (3.5) and (3.6), we get

dE

dt
=(Ȧ−

ṘR̈

R2
+

Ṙ3

R3
)
∫

IRd
ρ(t,x)|x|2 dx−(

R̈

R
−

Ṙ2

R2
)
∫

IRd
ρ(t,x)η ·xdx

+(2A−
Ṙ2

R2
)
∫

IRd
x ·(η+

Ṙ

R
x)ρ(t,x) dx

+2
Ṙ2

R2

∫

IRd
x ·(η+

Ṙ

R
x)ρ(t,x)dx

−
Ṙ

R

∫

IRd
x ·(

Ṙ2

R2
−

ṘR̈
2

R2
)ρ(t,x)xdx

−
Ṙ

R

∫

IRd
ρ(t,x)|η+

Ṙ

R
x|2 dx−d

Ṙ

R

∫

IRd
p(t,x)dx

=(2A−
R̈

R
)
∫

IRd
ρ(t,x)x ·η dx−2

Ṙ

R

∫

IRd
ρ(t,x)

|η|2

2
dx−d

Ṙ

R

∫

IRd
p(t,x)dx

(Ȧ+2A
Ṙ

R
)
∫

IRd
ρ(t,x)|x|2 dx.

Assuming now that A= R̈
2R

, we are left with

dE

dt
=−2

Ṙ

R

∫

IRd
ρ(t,x)

|η|2

2
dx −d

Ṙ

R

∫

IRd
p(t,x)dx

+
1

2

(

d

dt
(
R̈

R
)+2

ṘR̈

R2

)
∫

IRd
ρ(t,x)|x|2 dx.

If we write L(t)=Rq(t)E(t) and if we express p(t,x) in terms of ρ(t,x)e(t,x)
according to Equation (3.4), then

dL

dt
= (q−2)Rq−1Ṙ

∫

IRd
ρ(t,x)

|η|2

2
dx

+(q−(γ−1)d)Rq−1Ṙ

∫

IRd
ρ(t,x)e(t,x) dx

+
1

2
(Rq d

dt
(
R̈

R
)+(q+2)ṘR̈Rq−2)

∫

IRd
ρ(t,x)|x|2 dx.

The two first coefficients are nonpositive provided

q≤min(2,(γ−1)d).
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If we make the ansatz
R̈=Rp,

the coefficient of the last term can be written as

1

2
(p+q+1)Rp+q−2Ṙ

and t 7→L(t) is decreasing if p=−(q+1). For any γ >1, we recover the results
due to J.-Y. Chemin and D. Serre (see [2], [14]) with constants which are
explicit in terms of the initial data, and an additional term

∫

IRd ρ(t,x)|x|2 dx

(with a coefficient vanishing as t→+∞).

Theorem 3.1 If γ >1, any classical solution of Equations (3.1)-(3.4) is such
that

(i) If 1<γ≤1+ 2
d
, then

R(γ−1)d
∫

IRd
ρ(t,x)

(

1

2
|u(t,x)−

Ṙ

R
x|2 +e(t,x)

)

dx+
1

2R2

∫

IRd
ρ(t,x)|x|2 dx

=
∫

IRd
ρ(0,x)

(

1

2
|u(0,x)|2 +e(0,x)

)

dx+
1

2

∫

IRd
ρ(0,x)|x|2 dx

−
2−(γ−1)d

2

∫ t

0
R(γ−1)d−1Ṙ(s)

(
∫

IRd
ρ(s,x)|u(s,x)−

Ṙ(s)

R(s)
x|2 dx

)

ds.

(ii) If γ≥1+ 2
d
, then

R2
∫

IRd
ρ(t,x)

(

1

2
|u(t,x)−

Ṙ

R
x|2 +e(t,x)

)

dx+
1

2R2

∫

IRd
ρ(t,x)|x|2 dx

=
∫

IRd
ρ(0,x)

(

1

2
|u(0,x)|2 +e(0,x)

)

dx+
1

2

∫

IRd
ρ(0,x)|x|2 dx

−
1

2
((γ−1)d−2)

∫ t

0
RṘ(s)

(
∫

IRd
ρ(s,x)e(s,x) dx

)

ds.

Here R is the solution of

R̈=R−(q+1), R(0)=1, Ṙ(0)=0

and (γ >1)
q =min(2,(γ−1)d).
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Exactly as in [14], the method also applies to the case of a viscous fluid
with heat conduction

∂tρ+divx(ρu)=0, (3.7)

∂t(ρu)+divx(ρu⊗u)+∇xp=DivT, (3.8)

∂t(
1

2
ρ|u|2+ρe)+divx

(

(
1

2
ρ|u|2+ρe+p)u

)

=div(Tu)+divq (3.9)

where Tij satisfies Newton’s law

Tij =α(ρ)(∂iuj +∂jui)+β(ρ)(divu)δij. (3.10)

Assuming now that A= R̈
2R

, we are left with

dE

dt
=−2

Ṙ

R

∫

IRd
ρ(t,x)

|η|2

2
dx −d

Ṙ

R

∫

IRd
p(t,x)dx

+
1

2

(

d

dt
(
R̈

R
)+2

ṘR̈

R2

)
∫

IRd
ρ(t,x)|x|2 dx

−
Ṙ

R

d

dt

∫

IRd
g(ρ(t,x))dx.

where g satisfies

g(0)=0, ρg′(ρ)−g(ρ)=2α(ρ)+β(ρ). (3.11)

L(t)=Rq

(

E(t)+ Ṙ
R

∫

IRd g(ρ(t,x))dx

)

is then decreasing as soon as

d

dt
(Rq−1Ṙ)≤0 .

If R̈=Rp, with p≤−(q+1), then

d

dt
(Rq−1Ṙ)=(q−1)Rq−2Ṙ2 +Rp+q−1∼ (q−1)Rq−2Ṙ2→−∞ as t→+∞

provided q <1. As a consequence, we may recover the dispersion results given
by D. Serre in [14] (for the special case g(ρ)=Cρδ with δ >1), extend them
to the general case and provide an additional momentum

∫

IRd ρ(t,x)|x|2 dx.

Theorem 3.2 If γ >1, any classical solution of Equations (3.7)-(3.10) is
such that
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(i) If 1<γ <1+ 1
d
, then

R(γ−1)d
∫

IRd
ρ(t,x)

(

1

2
|u(t,x)−

Ṙ

R
x|2 +e(t,x)

)

dx

+R(γ−1)d
∫

IRd
g(ρ(t,x))dx+

1

2R2

∫

IRd
ρ(t,x)|x|2 dx

=
∫

IRd
ρ(0,x)

(

1

2
|u(0,x)|2 +e(0,x)

)

dx

+
∫

IRd
g(ρ(0,x))dx+

1

2

∫

IRd
ρ(0,x)|x|2 dx

−
2−(γ−1)d

2

∫ t

0
R(γ−1)d−1Ṙ(s)

(
∫

IRd
ρ(s,x)|u(s,x)−

Ṙ(s)

R(s)
x|2 dx

)

ds

−
∫ t

0
[

1

R2(s)
−(1−(γ−1)d)R(γ−1)d−2(s)Ṙ2(s)](

∫

IRd
g(ρ(s,x))dx)ds,

where R is the solution of

R̈=R−[(γ−1)d+1], R(0)=1, Ṙ(0)=0

(R(t)∼ t, Ṙ(t)
R(t)

∼ 1
t

as t→+∞).

(ii) If γ≥1+ 1
d
, then for any t, t0 ∈ IR,

t

∫

IRd
ρ(t,x)

(

1

2
|u(t,x)−

1

t
x|2 +e(t,x)

)

dx

+t

∫

IRd
g(ρ(t,x))dx+

1

2t2

∫

IRd
ρ(t,x)|x|2 dx

= t0

∫

IRd
ρ(t0,x)

(

1

2
|u(t0,x)−

1

t 0
x|2 +e(t0,x)

)

dx

+t0

∫

IRd
g(ρ(t0,x))dx+

1

2t20

∫

IRd
ρ(t0,x)|x|2 dx

−
∫ t

t0

(

1

2

∫

IRd
ρ(s,x)|u(s,x)−

1

s
x|2 dx

+[(γ−1)d−1]
∫

IRd
ρ(s,x)e(s,x)dx

)

ds,

Note that in the case γ≥1+ 1
d
, R(t)= t is exactly the function which is

used by D. Serre in [14] (for g(ρ)=Cρδ with δ >1) and that all the above
estimates are equivalent to the ones of D. Serre and J.-Y. Chemin as t→+∞.
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4 Conclusion

Extracting the right scale and finding the rate of dispersion or even the
Lyapunov functional that governs this rate is probably the easy part of the
study of the asymptotic dispersion profile or ”intermediate asymptotics”, and
the next (open) question is to understand in which cases the difference of the
rescaled solution with a stationary solution of the rescaled equation has a
faster, eventually exponential, decay in this framework of a priori estimates.
The Lyapunov functional can indeed be used to study the dynamical stability,
and in some cases is a relative to the stationary states entropy. This question
is not easy, and has been partially answered in the context of systems where
the field is coupled to the spatial density by the (coulombic) Poisson equation:
the rescaled Vlasov-Poisson system converges to its unique stationary state
if d=1 (see [1]) but counter-examples to the convergence of the solution to
the rescaled Euler-Poisson system to its unique stationary state were found
in [7] when d=3.

Acknowledgements.The author thanks the program on Charged Particle
Kinetics at the Erwin Schroedinger Institute and the TMR ”Asymptotic
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