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Introduction

A semi-group (Pt)t≥0 is said to be hypercontractive with contraction function
t 7→ q(t) if and only if q is increasing and if for any admissible f ,

‖Ptf‖q(t) ≤ C(t) ‖f‖q(0) ∀ t ≥ 0

for some continuous function t 7→ C(t). It is ultracontractive if for some q ≥ 1

‖Ptf‖∞ ≤ C(t) ‖f‖q ∀ t > 0 .

It is the purpose of Gross’ and Varopoulos’ Theorems [23,32] to prove such
properties for diffusion processes. This question introduces in a very natural
way the logarithmic Sobolev inequality∫

f 2 log(f 2) dµ ≤ C∗
∫
|∇f |2 dµ ∀ f ∈ H1(IRn) s.t.

∫
f 2 dµ = 1 ,

for some positive constant C∗, where µ is a measure on IRn which is invariant
under the action of (Pt)t≥0. In the case of the semi-group associated with the
heat equation, dµ is the Lebesgue measure and the above inequality is the
Euclidean logarithmic Sobolev inequality, with C∗ = 2. This inequality can be
reformulated in a form which is optimal under scalings [33] as∫

f 2 log(f 2) dx ≤ n

2
log

[
2

πne

∫
|∇f |2 dx

]
∀f ∈ W 1,2(IRn) s.t. ‖f‖2 =1 .

Here we consider the semi-group generated by the nonlinear diffusion equation

ut = ∆p(u
1/(p−1))

with ∆pw := div (|∇w|p−2∇w) for some p > 1 and prove that the associated
semi-group is hyper- and ultra-contractive. The inequality which generalizes
the Euclidean logarithmic Sobolev inequality is the optimal Lp-Euclidean log-
arithmic Sobolev inequality∫

fp log(fp) dx ≤ n

p
log

[
Lp

∫
|∇f |p dx

]
∀f ∈ W 1,p(IRn) s.t. ‖f‖p =1 ,

which has been introduced recently [18] and then extended in [22] (also see
[14]). This inequality holds for some positive and optimal constant Lp (see
Theorem 4 below for more details). The entropy, which corresponds to the
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left hand side of the inequality, plays a crucial role for the existence and the
uniqueness of a global solution to the Cauchy problem.

This paper is organized as follows. In Section 1, we state our main results
and introduce the optimal Lp-Euclidean logarithmic Sobolev inequality. The
existence and the uniqueness of a global solution is established in Section 2.
Section 3 is devoted to hypercontractivity and Section 4 to connections with
large deviations and the Hamilton-Jacobi equation

vt +
1

p
|∇v|p = 0 ,

for which the optimal Lp-Euclidean logarithmic Sobolev inequality also plays
an important role. Note that this equation and its regularity properties have
been the subject of an earlier study of the third author [22].

1 Main results

Consider a global solution to the Cauchy problemut = ∆p(u
1/(p−1)) (x, t) ∈ IRn × IR+

u(·, t = 0) = f
(1)

for some nonnegative initial data f . Note that ∆pu
m = div (|∇um|p−2∇um)

is homogeneous of degree one if and only if m = 1/(p − 1) (we shall take
advantage of this fact in the proof of Theorem 1). If one considers the equation
ut = ∆pu

m, the case m 6= 1/(p − 1) has interesting scaling properties related
to Gagliardo-Nirenberg inequalities. The optimal Lp-Euclidean logarithmic
Sobolev inequality appears then as a limit case [17–19] of these inequalities
when m → 1/(p− 1).

By ‖u‖p, p 6= 0, we denote the quantity (
∫
|u|p dx)1/p and unless it is explicitely

specified, integrals are taken over IRn. We also write p∗ = p/(p − 1) for the
Hölder conjugate exponent of p, if p ∈ (1, +∞).

Our first result is a global existence and uniqueness result. See the beginning
of Section 2 for some comments on the literature and on our strategy of proof.

Theorem 1 Let p > 1 and assume that f is a nonnegative function in L1(IRn)
such that |x|p∗f and f log f belong to L1(IRn). Then there exists a unique weak
nonnegative solution u ∈ C(IR+

t , L1(IRn
x)) of (1) with initial data f , such that

u1/p ∈ L1
loc(IR

+
t , W 1,p

loc (IRn
x)).
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Here by weak solution of (1) we simply mean a solution in the sense of the
distributions. The a priori estimate on the entropy term

∫
u log u dx plays a

crucial role in the proof. Concerning regularity, our main result is the following
hypercontractivity property.

Theorem 2 Let α, β ∈ [1, +∞] with β ≥ α. Under the same assumptions as
in Theorem 1, if moreover f ∈ Lα(IRn), any solution of (1) with initial data f
satisfies the estimate

‖u(·, t)‖β ≤ ‖f‖α A(n, p, α, β) t−
n
p

β−α
αβ ∀ t > 0

with

A(n, p, α, β) =
(
C1 (β − α)

)n
p

β−α
αβ C

n
p

2 ,

C1 = nLp ep−1 (p− 1)p−1

pp+1
, C2 =

(β − 1)
1−β

β

(α− 1)
1−α

α

β
1−p

β
− 1

α
+1

α
1−p

α
− 1

β
+1

.

See Theorem 4 below for a definition of Lp. Note that for p = 2, with L2 = 2
π n e

,
one recovers the classical estimates of the heat equation (see for instance
[3,23,28,32]). A similar result holds for α, β ∈ (0, 1] with β ≤ α and at a
formal level for β≤α<0: see Theorems 10, 11 in Section 3. As a special
case of Theorem 2, we obtain an ultracontractivity result in the limit case
corresponding to α = 1 and β = ∞.

Corollary 3 Consider a solution u with a nonnegative initial data f ∈L1(IRn)
satisfying the same assumptions as in Theorem 1 with α = 1. Then for any
t > 0

‖u(·, t)‖∞ ≤ ‖f‖1

(C1

t

)n
p

.

The main tool in our approach is the following optimal Lp-Euclidean logarith-
mic Sobolev inequality.

Theorem 4 [18,22] Let p ∈ (1, +∞). Then for any w ∈ W 1,p(IRn) with∫
|w|p dx = 1 we have,

∫
|w|p log |w|p dx ≤ n

p
log

[
Lp

∫
|∇w|p dx

]
, (2)
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with

Lp =
p

n

(
p− 1

e

)p−1

π−
p
2

 Γ(n
2

+ 1)

Γ(n p−1
p

+ 1)


p
n

.

Inequality (2) is optimal and it is an equality if

w(x) =

(
π

n
2

(σ

p

) n
p∗

Γ( n
p∗

+ 1)

Γ(n
2

+ 1)

)−1/p

e−
1
σ
|x−x̄|p∗ ∀ x ∈ IRn

for any p > 1, σ > 0 and x̄ ∈ IRn. For p ∈ (1, n) the equality holds only if w
takes the above form.

For our purpose, it is more convenient to use this inequality in a non homo-
geneous form, which is based on the fact that

inf
µ>0

[
n

p
log

( n

pµ

)
+ µ

‖∇w‖p
p

‖w‖p
p

]
= n log

(
‖∇w‖p

‖w‖p

)
+

n

p
.

Corollary 5 [17] For any w ∈ W 1,p(IRn), w 6= 0, for any µ > 0,

p
∫
|w|p log

(
|w|
‖w‖p

)
dx +

n

p
log

(
p µ e

nLp

)∫
|w|p dx ≤ µ

∫
|∇w|p dx .

Inequality (2) has been established in [18] for 1 < p < n in view of the
description of the intermediate asymptotics of (1) in IRn (see [17], and [30] for
the asymptotic behaviour in the bounded case). It has been linked to optimal
regularization properties of the Hamilton-Jacobi equation

vt +
1

p
|∇v|

1
p = 0 (3)

and extended to any p ∈ (1, +∞) in [22]. Also see [21] for a previous work
on hypercontractivity and properties of the Hamilton-Jacobi equation in case
p = 2, and [29,7,3,14,13,15] for connections with optimal mass transport,
which have been recently investigated.

For earlier results concerning the standard logarithmic Sobolev inequality (p =
2), one should refer to [23] (in the form of Corollary 5), to [33] for the form
which is invariant under scalings (Theorem 4, p = 2) and to [10] for the
expression of all optimal functions. In case p = 1, Inequality (2) was stated in
[27] and the expression of the optimal functions has been established in [4].
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2 Proof of Theorem 1

Existence and uniqueness of solutions to quasilinear parabolic equations have
been extensively studied. However, as far as we know, the available results deal
only with bounded domains. A standard reference when there is no external
potential is the paper by Alt and Luckhaus [2]. See [31,30,11] for more recent
results and further references. Very recently, Agueh in [1] adapted the strategy
of steepest descent of the entropy with respect to a convex cost functional of
Jordan, Kinderlehrer and Otto [24] to quasilinear parabolic equations. Their
approach relies on mass transportation techniques and is certainly the right
one from an abstract point of view. It covers Equation (1) in the case of a
bounded domain. Here we choose to give a more direct proof for the existence
and the uniqueness, which strongly relies on a priori estimates for the entropy∫

u log u dx (this denomination makes sense both from probabilistic and phys-
ical points of view). As a last preliminary remark, let us note that because
of the homogeneity of the equation, we can use the notion of weak solution
defined in Section 1 although the initial data is essentially in L1(IRn), so that
we dont need to introduce any renormalization procedure.

Since (1) is 1-homogenous, in the sense that µ u is a solution corresponding
to the initial data µ f for any µ > 0 whenever u is a solution corresponding
to an initial data f , there is no restriction to assume that

∫
f dx = 1. It is

also straightforward to check that u is a solution of (1) if and only if v is a
solution of vτ = ∆pv

1/(p−1) +∇ξ(ξ v) (x, t) ∈ IRn × IR+

v(·, τ = 0) = f
(4)

provided u and v are related by the transformation

u(x, t) =
1

R(t)n
v(ξ, τ) , ξ =

x

R(t)
, τ(t) = log R(t) , R(t) = (1 + p t)1/p

(see [17,19] for more details and consequences for large time asymptotics). Let

v∞(ξ) = π−
n
2

( p

σ

)n/p∗ Γ(n
2

+ 1)

Γ( n
p∗

+ 1)
exp(− p

σ
|x|p∗)

with σ = (p∗)2. For any nonnegative constant µ, µ v∞ is a nonnegative solution
of the stationary equation

∆pv
1/(p−1) +∇ξ(ξ v) = 0
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such that
∫

v∞ dx = µ. We may rewrite (4) as
vτ = ∇ξ

[
v
(∣∣∣∇ξv

v

∣∣∣p−2 ∇ξv

v
−
∣∣∣∇ξv∞

v∞

∣∣∣p−2 ∇ξv∞
v∞

)]
(x, t) ∈ IRn × IR+

v(·, τ = 0) = f

The next step consists in regularizing the problem. First we replace the initial
data f by

f ε0 = N−1
ε0

χε0 ∗min(f0 + ε0v∞, ε0
−1v∞) , ε0 ∈ (0, 1)

where χε0 = ε0
−nχ(·/ε0) is a regularizing function, χ is a C∞ with compact

support function, with values in [0, 1], such that χ(x) ≡ 1 if |x| ≤ 1 and
χ(x) ≡ 0 if |x| ≥ 2. The normalization constant Nε0 is chosen such that∫

f ε0 dx = 1. We can also replace the equation for v by a regularized one:
vτ = ∇ξ

[
v

([
(1−ε)

∣∣∣∇ξ(v+ηv∞)

v+ηv∞

∣∣∣2+ ε
(1+η)2

∣∣∣∇ξv∞
v∞

∣∣∣2] p
2
−1

∇ξv

v
−
∣∣∣ ∇ξv∞
(1+η)v∞

∣∣∣p−2∇ξv∞
v∞

)]
v(·, τ = 0) = f ε0

for some positive regularizing parameters ε and η. Note that v∞ is still a
stationary solution. To emphasize the dependence in the various regularization
parameters, we shall denote this solution by vε0

ε,η. The standard theory [26]
applies since this is a quasilinear parabolic equation of the form

vτ = ∇ξ · [a(ξ, v,∇ξv)]

for which the right hand side is locally (in ξ) uniformly elliptic. To be precise,
one should first solve the problem on a bounded domain (it is now strictly
elliptic), say a large centered ball BR of radius R, with Dirichlet boundary
conditions v = v∞ on ∂BR (the initial data also has to be modified accord-
ingly), and then let R → +∞.

The solution is smooth and the Maximum Principle applies. The functions
ε0N

−1
ε0

v∞ and (ε0Nε0)
−1v∞ are respectively lower and upper stationary solu-

tions:

ε0

Nε0

v∞(ξ) ≤ vε0
ε,η(τ, ξ) ≤

1

ε0 Nε0

v∞(ξ) ∀ (ξ, τ) ∈ IRn × IR+ (5)

uniformly with respect to ε, η > 0 so that we may let η → 0 and keep the
above estimate. Note that a similar uniform in ε and η (but local in ξ) estimate

holds for (vε0
ε,η)

−1
∣∣∣∇ξv

ε0
ε,η

∣∣∣. Details are left to the reader.
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Now we may build an entropy estimate as follows:

d

dτ

∫
vε0

ε,0 log
(vε0

ε,0

v∞

)
dξ = −

∫ [
∇ξv

ε0
ε,0

vε0
ε,0

− ∇ξv∞
v∞

]

·

vε0
ε,0

[(1− ε)
∣∣∣∣∇ξv

ε0
ε,0

v
ε0
ε,0

∣∣∣∣2 + ε
∣∣∣∇ξv∞

v∞

∣∣∣2] p
2
−1

∇ξv
ε0
ε,0

v
ε0
ε,0

−
∣∣∣∇ξv∞

v∞

∣∣∣p−2 ∇ξv∞
v∞

 dξ

(which by the way proves that vε0
ε,0 converges to v∞ as τ → +∞). Because

of (5), such an estimate passes to the limit in integral form as ε → 0:∫
vε0 log

(vε0

v∞

)
dξ ≤

∫
f ε0 log

(f ε0

v∞

)
dξ

−
τ∫

0

∫
vε0

(
∇vε0

vε0
− ∇v∞

v∞

)
·
( ∣∣∣∇vε0

vε0

∣∣∣p−2 ∇vε0

vε0
−
∣∣∣∇v∞

v∞

∣∣∣p−2 ∇v∞
v∞

)
dξ dτ ,

(6)

where vε0 := vε0
0,0 is now a solution of

vε0
τ = ∇ξ

[
vε0

(∣∣∣∇ξvε0

vε0

∣∣∣p−2 ∇ξvε0

vε0
−
∣∣∣∇ξv∞

v∞

∣∣∣p−2 ∇ξv∞
v∞

)]
vε0(·, τ = 0) = f ε0

satisfying (5) and such that (vε0)−1 |∇ξv
ε0| is locally bounded in ξ (however

this estimate is certainly not true uniformly with respect to ε0).

We may now go back to the original variables, t and x. Let uε0 be the solution
of Equation (1) with initial data f ε0 and consider u∞ = 1

R(t)n v( x
R(t)

, log R(t)).
Since∫

u log
( u

u∞

)
dx =

∫
u log u dx + (p− 1)(R(t))−p∗

∫
|x|p∗u dx + σ(t)

∫
u dx

for some C1 function σ, it is sufficient to study the first term of the right hand
side to pass to the limit as ε0 → 0 in the entropy inequality, i.e.,

d

dt

∫
uε0 log uε0 dx = − 1

p− 1

∫ ∣∣∣p∗∇(uε0)1/p
∣∣∣p dx .

A crucial remark is the following lemma, which has been stated in [5] (also
see [6]) for p = 2 and in [20] in the other cases. For completeness, we give a
proof of it.

Lemma 6 [20] On the space {u ∈ L1(IRn) : u1/p ∈ W 1,p(IRn)}, the func-
tional F [u] :=

∫
|∇uα|p dx is convex for any p > 1, α ∈ [1

p
, 1].
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Proof. For any two given nonnegative C1 with compact support functions u1,
u2, let

ut = t u2 + (1− t) u1 = u1 + t v with v = u2 − u1 , f(t) = F [ut] .

It is readily checked that f(t) is finite for any t ∈ [0, 1] and twice differentiable.
For simplicity, we shall write u instead of ut in the computations. Define

X = α uα−1∇u

Y = α uα−2 [(α− 1) v∇u + u∇v]

Z = α (α− 1) uα−3 [(α− 2) v2∇u + 2 u v∇v]

Then

f ′′(t) = p
∫
|X|p−4

[
(p− 2) (x · Y )2 + |X|2(|Y |2 + X · Z)

]
dx

= p α4
∫
|X|p−4u4α−6A2

v2

[
(α−1)((α−1)p−1)A2 + 2p(α−1)AB + (p−1)B2

]
dx

where A = v∇u and B = u∇v. The quantity (α−1)((α−1)p−1)A2+2p(α−1)AB+
(p−1)B2 is nonnegative for any A, B ∈ IRn if and only if 0 ≥ [p(α− 1)]2− (p−
1) (α− 1)((α− 1)p− 1) = (α p− 1)(α− 1). �

In the case of Equation (1) the entropy production term is therefore convex.
Thus the entropy inequality (6) passes to the limit as ε0 → 0. By the Dunford-
Pettis criterion, uε0 converges to some function u weakly in L1(IRn × IR+

loc).
Moreover, because of the divergence form of the right hand side of the equa-
tion, we have

d

dt

∫
uε0 dx = 0

so that
∫

u dx is also conserved. Since

(p− 1)∇u1/(p−1) = p u1/(p(p−1))∇u1/p ,

we obtain

‖∇u1/(p−1)‖p−1 ≤ p∗‖u‖1/(p(p−1))
1 ‖∇u1/p‖p

by Hölder’s inequality (this even makes sense for p ∈ (1, 2) since the Hölder
exponents are p and p∗). There is no difficulty to check that u(·, 0) = f and

9



that uε0 strongly converges to u in L1
loc(IR

n × IR+). It remains to make sure
that u is a solution of (1). Since ∇(uε0)1/p weakly converges to ∇u1/p in
L∞(IR+

loc, L
p
loc(IR

n))), if p ≥ 2, ∇(uε0)1/(p−1) weakly converges to ∇u1/(p−1) in
L∞(IR+

loc, L
p−1
loc (IRn))). This is enough to give a sense to ∆pu and prove that u

satisfies (1) in the distribution sense. The adaptations to be made if p ∈ (1, 2)
are left to the reader. This concludes the proof of existence.

Remark 7 The entropy decays exponentially since

d

dt

∫
u log

( u∫
u dx

)
dx = − 1

p− 1

∫
|p∗∇u1/p|p dx

and Corollary 5 applied with w = u1/p, µ = nLp

p e
gives

d

dt

∫
u log

( u∫
u dx

)
dx ≤ −(p∗)p+1e

nLp

∫
u log

( u∫
u dx

)
dx .

For a more precise description of the asymptotic behaviour, see [17,19].

It is remarkable that the entropy, or to be precise, the relative entropy, turns
out to be the right tool for uniqueness as well. Consider two solutions u1 and u2

of (1). A simple computation shows that

d

dt

∫
u1 log

(u1

u2

)
dx

=
∫ (

1 + log
(u1

u2

))
(u1)t dx−

∫ (u1

u2

)
(u2)t dx

= −(p−1)
−(p−1)

∫
u1

[
∇u1

u1

− ∇u2

u2

]
·
[∣∣∣∣∇u1

u1

∣∣∣∣p−2 ∇u1

u1

−
∣∣∣∣∇u2

u2

∣∣∣∣p−2 ∇u2

u2

]
dx .

It is then straightforward to check that two solutions with same initial data f
have to be equal since

1

4 ‖f‖1

‖u1(·,t)− u2(·,t)‖2
1 ≤

∫
u1(·,t) log

(u1(·,t)

u2(·,t)

)
dx ≤

∫
f log

(f

f
) dx = 0

by the Csiszár-Kullback inequality [16,25].

Remark 8 The computation we have used above for proving the uniqueness
is exactly the same as for the existence proof, with u1 = u and u2 = u∞. This
is why the detailed justification of the computation has been omitted. All terms
make sense at least in the integrated in t sense. In the stationary case, similar
computations have been used extensively, see [8] for an example in case p = 2.
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3 Proof of Theorem 2

As a preliminary result, let us note that the quantity
∫

uq log u dx makes sense.

Lemma 9 Let q, Q be such that 1 ≤ q < Q and assume that u ∈ L1∩LQ(IRn)
is a nonnegative function such that |x|p∗u ∈ L1(IRn). Then uq log u belongs to
L1(IRn).

Proof. On the one hand, let U = exp(−|x|p
∗Q−q

Q−1 ). Then∫
uq log u dx =

∫
uq log

( u

U

)
dx +

∫
|x|p

∗Q−q
Q−1 uq dx .

The first term of the right hand side is bounded from below by Jensen’s
inequality:

∫
uq log

( u

U

)
dx =

1

q

∫
uq log

(
uq

U q

)
dx ≥ 1

q

∫
uq dx log

( ∫
uq dx∫
U q dx

)

and the second term, which is nonnegative, makes sense because of Hölder’s
inequality:

∫
|x|p

∗Q−q
Q−1 uq dx ≤

(∫
|x|p∗u dx

)Q−q
Q−1

(∫
uQ dx

) q−1
Q−1

.

On the other hand (see [9,18])

∫
uq log u dx ≤ 1

Q− q

∫
uq dx log

(∫
uQ dx∫
uq dx

)
,

as can be checked using Hölder’s interpolation of ‖u‖r between ‖u‖q and ‖u‖Q

for some r ∈ [q, Q) and deriving with respect to r at r = q. �

Take a nonnegative function u ∈ Lq(IRn) with uq log u in L1(IRn). It is straight-
forward that

d

dq

∫
uq dx =

∫
uq log u dx . (7)

Consider now a solution u of (1). For a given q ∈ [1, +∞),

d

dt

∫
uq dx = − q(q − 1)

(p− 1)p−1

∫
uq−p|∇u|p dx . (8)
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Assume that q depends on t and let F (t) = ‖u(·, t)‖q(t). Let ′ = d
dt

. A com-
bination of (7) and (8) gives

F ′

F
=

q′

q2

[∫ uq

F q
log

( uq

F q

)
dx− q2(q − 1)

q′(p− 1)p−1

1

F q

∫
uq−p|∇u|p dx

]
.

Since
∫

uq−p|∇u|p dx =
(

p
q

)p ∫
|∇uq/p|p dx, Corollary 5 applied with w = uq/p,

µ =
(q − 1) pp

q′ qp−2 (p− 1)p−1

gives for any t ≥ 0

F (t) ≤ F (0) eA(t) with A(t) =
n

p

t∫
0

q′

q2
log

(
Kp

qp−2 q′

q − 1

)
ds

and Kp =
nLp

e

(p− 1)p−1

pp+1
.

Now let us minimize A(t): the optimal function t 7→ q(t) solves the ODE

q′′ q = 2 q′
2

,

which means that

q(t) =
1

a t + b

for some a, b ∈ IR. Thus A is given by

A(t) = −n

p

t∫
0

a log

(
aKp

(a s + b)p−1(a s + b− 1)

)
ds

and an identification of q0 =α, q(t)=β allows to compute at= α−β
αβ

and b= 1
α
.

Note that a=−q′q−2 < 0. Let ϕ(u)=(p−1) u log u−(1−u) log(1−u)−p u. Then

A(t) = −n
p
a
∫ t
0 [log(−aKp)− ϕ′(as + b)] ds

= n
p

β−α
α β

log
(

β−α
α β

Kp

t

)
+ n

p

[
ϕ
(

1
β

)
− ϕ

(
1
α

)]
.

This ends the proof of Theorem 2. �
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With a minor adaptation of the above proof, one can state a result similar to
the one of Theorem 2 in the case α, β ∈ (0, 1] with β ≤ α and at a formal
level in the case β ≤ α < 0 (in both cases, a > 0). Since the sign of q′ is
changed, the inequality is reversed, compared to Theorem 2: such results are
not hypercontractivity properties any more. In the second case, the existence
of a solution is not covered by Theorem 1 and is, as far as we know, an open
question. With ϕ(u) = (p− 1) u log u + (u− 1) log(u− 1)− p u, one gets the
following result.

Theorem 10 Let α, β ∈ (0, 1] with β ≤ α. Under the same assumptions as
in Theorem 1, any solution u of (1) with initial data f such that fα belongs
to L1(IRn) satisfies the estimate

‖u(·, t)‖β ≥ ‖f‖α A(n, p, α, β) t
n
p

α−β
αβ ∀ t > 0

with

A(n, p, α, β) =
(
C1 (α− β)

)n
p

β−α
αβ C

n
p

2 ,

C1 = nLp ep−1 (p− 1)p−1

pp+1
, C2 =

(1− β)
1−β

β

(1− α)
1−α

α

β
1−p

β
− 1

α
+1

α
1−p

α
− 1

β
+1

.

Here C2 has the same expression as in Theorem 2 and one can write

A(n, p, α, β) =
(
C1 |β − α|

)n
p

β−α
αβ C

n
p

2 , C2 =
|β − 1|

1−β
β

|α− 1| 1−α
α

|β|
1−p

β
− 1

α
+1

|α|
1−p

α
− 1

β
+1

(9)

in order to have a general expression which is valid for both results.

At a formal level (existence of a global solution is not known), it is even possible
to state a result for negative exponents α and β. Note indeed that in such a
case, the boundedness of

∫
uα

0 dx is incompatible with the requirement: u0 ∈
L1(IRn). The following result is obtained by adapting the proof of Theorem 2
to the case ϕ(u) = (p− 1) u log(−u)− (1− u) log(1− u)− p u.

Theorem 11 Let α, β < 0 with β ≤ α. Any C2 global solution u of (1) with
initial data f such that fα belongs to L1(IRn) satisfies the estimate

‖u(·, t)‖β ≥ ‖f‖α A(n, p, α, β) t
n
p

α−β
αβ ∀ t > 0

where A(n, p, α, β), C1 and C2 are given by (9).
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4 Large deviations and Hamilton-Jacobi equations

Consider a solution of vt + 1
p
|∇v|p = 1

p−1
p

2−p
p−1 εp∗∆pv (x, t) ∈ IRn × IR+

v(·, t = 0) = g
(10)

The following lemma shows what is the relation of (10) and (1).

Lemma 12 Let ε > 0. Then v is a C2 solution of (10) if and only if

u = e
− 1

λεp∗ v
with λ =

p
1

p−1

p− 1

is a C2 positive solution of

ut = εp ∆p(u
1/(p−1)) (11)

with initial data f = e
− 1

λεp∗ g
.

In the limit case ε = 0,

Qp
t g(x) := v(x, t) = inf

y∈IRn

{
g(y) +

t

p∗

∣∣∣∣x− y

t

∣∣∣∣p∗
}

is a solution known as the Hopf-Lax solution of the Hamilton-Jacobi equa-
tion (3):

vt +
1

p
|∇v|p = 0 .

Let P p
t f(x) := u(x, t) whenever u is a solution of (1) with initial data f .

Because of the convergence of the solutions of (10) to the solutions of (3), by
Lemma 12 we get the following result.

Theorem 13 With the above notations and assumptions, for any C2 func-
tion g,

Qp
t g(x) = lim

ε→0

[
−λ εp∗ log

(
P p

εpt

(
e
− g

λ εp∗
))]

∀ t > 0 .

14



In other words, this essentially means that the family (P p
εpt)ε>0 satisfies a large

deviation principle of order εp∗ and rate function 1
p∗ tp∗−1

|x− · |p∗ .

This provides a new proof of the main result of [22].

Corollary 14 Let λ = p
1

p−1

p−1
. For any α, β with 0 ≤ α ≤ β, we may write

‖eQp
t g‖β ≤ ‖eg‖α B(n, p, α, β) t

n
p

α−β
αβ ∀ t > 0 ,

with

B(n, p, α, β) =
(
(β − α) λp−1C1

)n
p

β−α
αβ

α
p−1

α
+ 1

β

β
p−1

β
+ 1

α


n
p

.

Proof. We may first rewrite Theorem 10 as

‖P p
τ f‖γ ≥ ‖f‖δ

(C1

τ

)n
p

γ−δ
γδ

(δ − γ)
γ−δ
γδ

(1− γ)
1−γ

γ

(1− δ)
1−δ

δ

(γ)
1−p

γ
− 1

δ
+1

(δ)
1−p

δ
− 1

γ
+1


n
p

,

where we replaced α, β and t by δ, γ and τ respectively. Take now f = e
− h

λ εp∗ ,
τ = εpt, δ = λ εp∗α and γ = λ εp∗β and raise the above expression to the
power λ εp∗ . Taking the limit ε → 0 we obtain,

‖e−h‖β ≤ ‖e−Qp
t h‖α B(n, p, α, β) t

n
p

α−β
αβ ∀ t > 0 .

The result then holds by taking h = −Qp
t (g) and by using the following

inequality: −Qp
t (−Qp

t (g)) ≤ g. �

Remark 15 If instead of Theorem 10, we use Theorem 11, we obtain a di-
rect but formal proof of the Corollary 14. The proof is similar to the one of
Corollary 14. According to Theorem 10,

‖P p
τ f‖δ ≥ ‖f‖γ

(C1

τ

)n
p

δ−γ
γδ

(γ − δ)
δ−γ
γδ

(1− δ)
1−δ

δ

(1− γ)
1−γ

γ

(−δ)
1−p

δ
− 1

γ
+1

(−γ)
1−p

γ
− 1

δ
+1


n
p

,

where we replaced α, β and t by γ, δ and τ respectively. Take now f = e
− g

λ εp∗ ,
τ = εpt, γ = −λ εp∗α and δ = −λ εp∗β and raise the above expression to the
power −λ εp∗. The result then holds by taking the limit ε → 0.
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Conclusion

As a conclusion, let us summarize the main results. The three following iden-
tities have been established:

(i) For any w ∈ W 1,p(IRn) with
∫
|w|p dx = 1,∫

|w|p log |w| dx ≤ n

p2
log

[
Lp

∫
|∇w|p dx

]
.

(ii) With the notation P p
t for the semigroup associated to (1), i.e. ut =

∆p(u
1/(p−1)),

‖P p
t f‖β ≤ ‖f‖α A(n, p, α, β) t−

n
p

β−α
αβ .

(iii) With the notation Qp
t for the semigroup associated to (3), i.e. vt +

1
p
|∇v|p = 0,

‖eQp
t g‖β ≤ ‖eg‖α B(n, p, α, β) t−

n
p

β−α
αβ .

The first identity is the optimal Lp-Euclidean logarithmic Sobolev inequality
(2), see [18,22]. The equivalence (i) ⇐⇒ (iii) has been established in [22]. In
this paper, what we have seen is that (i) =⇒ (ii) and that (ii) =⇒ (iii). Going
back to the proof of Theorem 2, it is not difficult to check that (ii) =⇒ (i), so
that the constants in (ii) are optimal.
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transport, in Sur les inégalités de Sobolev logarithmiques, (foreword by D.
Bakry and M. Ledoux), Panoramas et synthèses no. 10, Société Mathématique
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