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1. MAIN RESULTS

The Euclidean logarithmic Sobolev inequality states that for any function
u ∈ W 1,2(IRd) with

∫
|u|2 dx = 1,

∫
|u|2 log |u| dx ≤ d

4
log
[

2
πde

∫
|∇u|2 dx

]
, (1)
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Here and in what follows, the symbol
∫

with no limits specified indicates
integration in entire IRd. Stated in this form, inequality (1) appears in the
work by Weissler [21]. It is optimal and equivalent to the Gross logarithmic
inequality [12] with respect to Gaussian weight,∫

|g|2 log |g| dµ ≤
∫

|∇g|2 dµ (2)

where dµ(x) = (2π)−
d
2 e−

|x|2
2 dx and

∫
|g|2 dµ = 1. Extremals for (1) are

precisely the Gaussians u(x) = (πσ)−
d
2 e−

1
4σ|x−x̄|2 with σ > 0, x̄ ∈ IRd,

see [8]. Different proofs of these estimates have appeared in the literature,
see for instance [1, 19, 4]. Geometric and probabilistic implications as well
as extensions of these inequalities have been the subject of many works, we
refer the reader to [13, 5] for results and further references. It is natural
to ask for the validity of a corresponding W 1,p-analogue of estimate (1).
Adams [1] found a class of general Lp-weighted logarithmic inequalities
which generalized (2). For p = 1, Beckner in [5] finds the optimal inequality

∫
|u| log |u| dx ≤ d log

[
L1

∫
|∇u| dx

]
,

for any u ∈ W 1,1(IRd) such that
∫
|u| dx = 1, with L1 = 1√

πd

[
Γ
(
d
2 + 1

)] 1
d ,

the extremals being characteristic functions of balls. While finding non-
optimal Lp-versions of the logarithmic Sobolev inequality is not difficult,
as we illustrate below, the methods developed in the works above metioned
do not seem to apply for general 1 < p < d. This open question is answered
in the following result.

Theorem 1.1. Let us assume 1 < p < d. Then for any u ∈ W 1,p(IRd)
with

∫
|u|p dx = 1 we have,

∫
|u|p log |u| dx ≤ d

p2
log
[
Lp

∫
|∇u|p dx

]
(3)

where Lp =
p

d

(
p− 1
e

)p−1

π− p
2

[
Γ(d2 + 1)

Γ(d p−1
p + 1)

] p
d

. (4)

Inequality (3) is optimal and equality holds if and only if for some σ > 0
and x̄ ∈ IRd

u(x) = π− d
2 σ−d p−1

p
Γ(d2 + 1)

Γ(d p−1
p + 1)

e−
1
σ |x−x̄|

p
p−1 ∀ x ∈ IRd . (5)
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Before proceeding, we will see that obtaining a non-optimal constant in
this inequality is a relatively simple matter. A first observation is that we
have the validity of the following logarithmic interpolation inequality:

Assume 1 ≤ p < s < +∞. Then for any u ∈ Lp(IRd)∩Ls(IRd), we have

∫
up log

( |u|
‖u‖p

)
dx ≤ s

s− p
‖u‖p log

(‖u‖s
‖u‖p

)
. (6)

Indeed, let us consider Hölder’s inequality ‖u‖q ≤ ‖u‖αp ‖u‖1−α
s with α =

p
q

s−q
s−p , p ≤ q ≤ s, and let us take logarithm of both sides. Then we obtain

log
(‖u‖q
‖u‖p

)
+ (α− 1) log

(‖u‖p
‖u‖s

)
≤ 0 .

Since this inequality trivializes to an equality when q = p, we may differ-
entiate it with respect to q at q = p and (6) immediately follows. Here and
in what follows we denote for any q > 0, ‖v‖q =

(∫
|v|q dx

)1/q .
Now, let us apply (6) with 1 ≤ p < d, s = d p

d−p . Using Sobolev inequality
we obtain, as noticed by Beckner [5], the inequality

∀ u ∈ W 1,p(IRd)
∫

|u|p log |u| dx ≤ d

p2
log
[
Cp

∫
|∇u|p dx

]
,

where Cp is Talenti’s constant [17]:

Cp =
1
d

(
p− 1
d− p

)p−1

π− p
2

(
Γ(d) Γ(d2 + 1)

Γ(dp ) Γ(d p−1
p + 1)

) p
d

.

The best constant in (3) given by (4) is strictly smaller than Cp for p > 1.
but equality holds in the limit p → 1 and Cp and Lp are asymptotically

equivalent as d → +∞. Stirling’s formula: Γ(x) ∼
√

2π
x xxe−x as x → +∞,

indeed gives

Cp

Lp
=

1
p
ep−1(d− p)−(p−1)

(
Γ(d)
Γ(dp )

) p
d

→ 1 as d → +∞ .

Our approach in the proof of Theorem 1.1 consists of finding Inequal-
ity (3) as a limiting case of a family of Gagliardo-Nirenberg inequalities
which are also optimal and of independent interest. In order to state that
result, we need to introduce some notation. We designate by Dp,q the com-
pletion of the space of smooth compactly supported functions on IRd for
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the norm ‖ · ‖p,q defined by ‖u‖p,q = ‖∇u‖p + ‖u‖q. Given 1 < p < q, let
us consider the number

r = p
q − 1
p− 1

. (7)

Theorem 1.2. Assume that 1 < p < d, p < q ≤ p(d−1)
d−p . Then for all

u ∈ Dp,q,

‖u‖r ≤ S ‖∇u‖θp ‖u‖1−θ
q . (8)

Here r is given by (7),

θ =
(q − p) d

(q − 1) (d p− (d− p) q)
, (9)

and with δ = d p − q (d − p) > 0, the optimal constant S takes the explicit
form:

S =
(
q − p

p
√
π

)θ (
p q

d (q − p)

) θ
p
(

δ

p q

) 1
r

(
Γ(q p−1

q−p ) Γ(d2 + 1)

Γ(p−1
p

δ
q−p ) Γ(d p−1

p + 1)

) θ
d

.

Equality holds in (8) if and only if for some α ∈ IR, β > 0, x̄ ∈ IRd,

u(x) = α
(
1 + β |x− x̄|

p
p−1

)− p−1
q−p ∀ x ∈ IRd . (10)

Let us observe that when q = p d−1
d−p , we have θ = 1, and r = d p

d−p , the
critical Sobolev exponent. Inequality (8) then becomes the optimal Sobolev
inequality with S = Cp, as found by Aubin and Talenti in [2, 17]. On the
other hand, as already quoted, estimate (3) corresponds to the limit q ↓ p
in (8). These Gagliardo-Nirenberg inequalities thus interpolate in optimal
way between the Sobolev and the logarithmic Sobolev inequalities.

Approximation of best constants have been studied in [14]. The idea
of taking a derivative with respect to some parameter in a family of in-
equalities has been used in different settings in [3, 5]. Optimal Gagliardo-
Nirenberg inequalities for p = 2 were used in the study of intermediate
asymptotics of fast diffusion and porous medium equations [11] (the limit
q → 2 corresponds to inequality (1) used for the heat equation).

The proof of Theorem 1.2 in §3 is carried out by direct minimization in
a similar spirit as that in [2, 17], except that we shall rely on a nontrivial
uniqueness result of radial solutions of equations involving the p-Laplacian
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recently found by Serrin and Tang in [16]. Identification of all extremals
use symmetry results of Gidas-Ni-Nirenberg type for the p-Laplacian [9, 7].
Note that as in the case p = 2 [11], when q < p, Theorem 1.2 has a
corresponding version which we discuss at the end of this paper.

2. PROOF OF THEOREM 1.1

We will carry out the proof of Theorem 1.1 based on Theorem 1.2, except
that we postpone the characterization of the minimizers for the end of next
section.

Let u ∈ W 1,p(IRd) \ {0}. Then u ∈ Dp,q for any q ∈ [p, p(d−1)
d−p ]. Taking

logarithm to both both sides of inequality (8) at this u, we get

1
θ

log
(‖u‖r
‖u‖q

)
− 1

θ
logS ≤ log

(‖∇u‖p
‖u‖q

)
. (11)

Note that

θ =
(

d

(p− 1)p2
+ o(1)

)
(q − p) as q ↓ p .

Since, we recall, r = p q−1
p−1 , a direct computation of the first term in the

left hand side of (11) yields

p

d

∫
up

‖u‖pp
log
(

up

‖u‖pp

)
dx− lim

q↓p

1
θ

logS ≤ log
(‖∇u‖p

‖u‖p

)
. (12)

Now we compute limq↓p
1
θ logS. To do so, we choose for S the extremal

function:

wq(x) =
(

1 +
q − p

p− 1
|x|

p
p−1

)− p−1
q−p

,

which converges to w(x) = e−|x|
p

p−1 as q ↓ p. Thus

lim
q↓p

1
θ

logS = − log
(‖∇w‖p

‖w‖p

)
+

(p− 1)p2

d
lim
q↓p

log
(

‖wq‖r

‖wq‖q

)
q − p

= I + II .

Now,

II =
1
d

∫
wp

‖w‖pp
log
(

wp

‖w‖pp

)
dx +

(p− 1)p2

d
(III − IV ) ,
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where

III = lim
q→p

1
q − p

[
log
(‖wq‖r
‖wq‖q

)]
, IV = lim

q→p

1
q − p

[
log
(‖w‖r
‖w‖q

)]
.

Now,

III = − 1
(p− 1)p2

log(‖w‖pp) +
1
p

lim
q→p

1
q − p

[
log(‖wq‖rr) − log(‖wq‖qq)

]
.

Thus

III = − 1
(p− 1)p2

log(‖w‖pp) +
1

p(p− 1)
1

‖w‖pp

∫
pwp−1 dx

Exactly the same computation yields III = IV . Hence

lim
q↓p

1
θ

logS = − log
(‖∇w‖p

‖w‖p

)
+

1
d

∫
wp

‖w‖pp
log
(

wp

‖w‖pp

)
dx ≡ 1

p
logLp .

Using the facts

∫
e−|x|a dx =

2π
d
2

a

Γ( da )
Γ(d2 )

,

∫
e−|x|a |x|a dx =

d

a

∫
e−|x|a dx ,

we find that Lp satisfies (4). Then inequality (3) readily follows from (12).

The optimality of Lp and the fact that functions of the form (5) are
extremals follow at once the from teh optimality of the extremals for S.
We postpone to the end of next section the proof of the fact that functions
(5) constitute all extremals for Lp. ✷

3. PROOF OF THEOREM 1.2

We shall assume in the proof that q < p(d−1)
d−p since the case of equality

corresponds precisely to the usual optimal Sobolev inequality.
Let us consider the functional defined in Dp,q as

J(u) =
1
p

∫
|∇u|pdx +

1
q

∫
|u|qdx

Given a number K > 0 which we will fix later, let us consider the set

MK = {u ∈ Dp,q /

∫
|u|r = K} .
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Let us set

c∗ = inf
u∈MK

J(u) . (13)

Using Sobolev and Hölder’s inequalities, we easily see that c∗ > 0. More-
over, this number is attained:

Lemma 3.1. There exists a radially symmetric, non-negative function
ū ∈ MK , ū = ū(|x|) such that J(ū) = c∗.

Let us assume for the moment the validity of this fact and let us use it
to establish estimate (8). We want to identify the minimizer ū predicted
by Lemma 3.1 for a special choice of K. By the Lagrange multiplier rule,
ū is a positive ground state radial solution of an equation of the form

−∆pu + uq−1 − µur−1 = 0 in IRd. (14)

for certain µ > 0. Here ∆p stands for the standard p-Laplacian operator,
∆pu =div (|∇u|p−2∇u). Now, the transformation

w(x) = µ
1

r−q u(µ
q−p

p(r−q)x)

takes equation (14) into

−∆pw + wq−1 − wr−1 = 0 in IRd, (15)

Equation (15) has a explicit solution given by

w∗(x) = α(1 + β|x|
p

p−1 )−
p−1
q−p

with α=
(

p (q − 1)
p (d− 1) − q (d− p)

) p−1
q−p

, β=(q− 1)
(

q − p

p (d− 1) − q (d− p)

) p
p−1

.

At this point we invoke a result by Serrin and Tang in [16], which ensures
that the radial positive ground state solution of (15) is unique. Therefore
we must have ū(x) = µ− 1

r−q w∗(µ
− q−p

p(r−q)x). Now,∫
ū(x)rdx = µ

d(q−p)
p(r−q)−

r
r−q

∫
w∗(x)rdx = K.

At this point we make the convenient choice of K in the definition of MK ,
K ≡

∫
w∗(x)rdx. Then we find that, necessarily µ = 1, and ū = w∗. Thus

we have the inequality J(w∗) ≤ J(u) for all u ∈ MK . Now, given such a



8 M. DEL PINO, J. DOLBEAULT

u, we consider for λ > 0 the function uλ = λ
d
r u(λx). Then J(w∗) ≤ J(uλ)

or

J(u∗) ≤ λ
(d−p)

r ( pd
d−p−r)

∫ |∇u|p
p

dx + λ−(1− q
r )d

∫ |u|q
q

dx (16)

for all λ > 0. Minimizing the right hand side of (16) in λ we obtain the
existence of an optimal positive constant T depending only on p, q and d
such that

T ≤ ‖∇u‖θp‖u‖1−θ
q (17)

for all u ∈ MK , where θ is given by (9) and (17) is reached with equality
at u = w∗. ¿From here, the optimal inequality (8) readily follows, as well
as the fact that the functions (10) are extremals for it. The computation
of the optimal constant S can be carried out directly using properties of
the Gamma function.

Let us now prove Lemma 3.1. Although this is a relatively standard fact,
we provide a self-contained argument along the lines of [6], see also [15].
Using Schwarz’ symmetrization, it suffices to seek the minimizers within the
subset of MK of non-negative radial functions u(|x|) which are decreasing
and go to zero as |x| → ∞. Let us consider a minimizing sequence un for
J on MK , constituted by radially symmetric decreasing functions. Then
un may be assumed to converge weakly in Dp,q and in Lr to some ū, and
strongly in Lr over compact sets. By semicontinuity, ū is a minimizer of
(13) if we show that un → ū strongly in Lr(IRd). This is an immediate
consequence of the following result, which is a variation of the well-known
Strauss compactness lemma.

Lemma 3.2. Let p, q and r be given numbers as in the statement of
Theorem 1.1. Then there exist positive constants C and σ such that for all
u ∈ Dp,q,

∀ ρ > 0 ,

∫
|x|>ρ

|u|r dx ≤ C ‖u‖p,q ρ−σ .

Proof. Let us write

up(ρ) = −p

∫ ∞

ρ

u(s)p−1u′(s)
1

sd−1
sd−1 ds .

Let t be defined by the relation p−1
q + 1

p + 1
t = 1, namely 1

t = (p−1)( 1
p − 1

q ).
Using that p < d and Hölder’s inequality we find

u(ρ) ≤ C ‖∇u‖
1
p
p ‖u‖

p−1
p

q ρ−b ,
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where b = ((d− 1)t− d)/pt. Now, by interpolation,

(∫
|x|>ρ

|u|r dx

) 1
r

≤ ‖u‖(1−α)
q

(∫
|x|>ρ

|u|
dp

d−p dx

)α
(d−p)

dp

≤ C ρα
d−p
dp (d−1− bdp

d−p )

for a certain α > 0. Now, we directly check that b d p
d−p > d if and only if

(p − 1) t > d, i.e. q < dp/(d − p). This relation is automatically satisfied
by assumption, and the lemma thus follows. ✷

It only remains to prove that all extremals need to be radially symmetric
around some point and are therefore of the given form (10). It is a standard
matter that weak solutions of equation (14) are at least of class C1 [18].
Minimizers need to be strictly one-signed, for if u is a minimizer so is |u|
and the result follows from a strong maximum principle for the p-Laplacian
in [20]. For 1 < p < 2, radial symmetry of positive solutions is a special
case of a result contained in [10] which is an extension of [9]. There, radial
symmetry is proven for an equation of the form ∆pu + f(u) = 0 for f
nonincreasing near u = 0 and locally Lipschitz in (0,∞). For p > 2,
symmetry follows from Theorem 7.3 in [7]. In that result the assumption
u ∈ W 1,p(IRd) was used, however examining the proof one sees that only
“enough decay” is needed. Let us make this more precise. First of all, we
observe that the solution u is uniformly small outside a large ball. Indeed,
a standard Moser iteration yields an interior estimate in concentric balls
of fixed radii, estimating L∞-norm of the solution in terms of W 1,p norm
in the larger ball. The latter quantity gets small far from the origin since
u ∈ Dp,q. Let us say u(x) < ε0, sufficiently small, for all |x| > R0:

−∆pu +
1
2
uq−1 ≤ 0 for R0 ≤ |x| .

It is readily checked that the function w(x) = K |x|−
p

q−p satisfies −∆pw +
1
2w

q−1 ≥ 0 for x �= 0 and any K sufficiently large. Now, if we choose K
so that w(R0) > ε0, we obtain by integral comparison u ≤ w for |x| > R0.
Now, using η2u as a test function in the equation satisfied by u, where η
is a cut-off function which equals zero for |x| < R/2, is equal to one for
|x| > R, and |∇η| ≤ C/R, we obtain that∫

|x|>R

|∇u|pdx ≤ C

∫
|x|>R/2

uqdx ≤ CRd− q
p q−p.

We can then find a sequence R = Rn → ∞ along which∫
|x|=Rn

|∇u|pdσ ≤ CR
d−1− qp

q−p
n .
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(
∫
|x|=Rn

|∇u|pdσ)
p−1
p (
∫
|x|=Rn

|w|pdσ)
1
p ≤ CR

d−1− q(p−1)
q−p − p

q−p
n .

The exponent in the last term is negative thanks to q < dp
d−p , hence that

quantity goes to zero. This fact suffices for the the argument in [7] p. 201
to go through and the proof of the theorem is concluded. ✷

End of the proof of Theorem1.1. Finally let us show that all minimizers
corresponding to the logarithmic Sobolev inequality are also given by the
functions (5). In this case, the extremals correspond after scaling to the
positive ground state solutions of a problem of the form

∆pu + up−1 log u = 0 .

Again radial symmetry follows from [9] for 1 < p < 2 and [7] for p > 2. The
uniqueness result of [16] applies to show that the radial solution is unique.
✷

We end this paper by stating a family of optimal Galiardo-Nirenberg
inequalities when q < p < d.

Theorem 3.1. Assume that 1 < p < d, 1 < q < p. There exists a
constant S such that for all u ∈ Dp,q,

‖u‖q ≤ S ‖∇u‖θp ‖u‖1−θ
r ,

where r is given by (7), θ = (p−q) d
q (d (p−q)+p (q−1)) and with δ = d p−q (d−p) > 0,

the optimal constant S takes the explicit form:

S =
(
p− q

p
√
π

)θ (
p q

d (p− q)

) θ
p (p q

δ

) 1−θ
r

(
Γ(p−1

p
δ

p−q + 1) Γ(d2 + 1)

Γ(q p−1
p−q + 1) Γ(d p−1

p + 1)

) θ
d

.

If q > 2 − 1
p , equality holds if and only if for some α ∈ IR, β > 0, x̄ ∈ IRd,

u(x) = α
(
1 − β |x− x̄|

p
p−1

)− p−1
q−p

+
∀ x ∈ IRd .

Proof. Notice that the extremals are compactly supported functions. A
minimisation procedure similar to that of Theorem 1.2 can be carried out
for the functional 1

p

∫
IRd |∇u|p dx + 1

r

∫
IRd |u|r dx under an appropriate

constraint on ‖u‖q. One can prove the existence of a radial minimizer
using approximations on balls and an appropriate scaling argument as in
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[11]. If q > 2 − 1
p (which means r > 1), this minimizer is a radial ground

state solution of −∆pu + ur−1 − uq−1 = 0. Using the symmetry and
uniqueness results above quoted, one can then show that there is no other
radial minimizer. ✷
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2. T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry
11 no. 4 (1976), 573–598.

3. D. Bakry, T. Coulhon, M. Ledoux, L. Saloff-Coste, Sobolev inequalities in Disguise,
Indiana Univ. Math. J. 44 no. 4 (1995), 1033–1074.

4. W. Beckner, Geometric proof of Nash’s inequality, IMRN (Internat. Math. Res. No-
tices) no. 2 (1998), 67–71.

5. W. Beckner, Geometric asymptotics and the logarithmic Sobolev inequality, Forum
Math. 11 (1999), 105–137.

6. H. Berestycki, P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground
state, Arch. Rational Mech. Anal. 82 no. 4 (1983), 313–345.

7. Brock, Friedemann Continuous rearrangement and symmetry of solutions of elliptic
problems. Proc. Indian Acad. Sci. Math. Sci. 110 (2000), no. 2, 157–204.

8. E.A. Carlen, Superadditivity of Fisher’s information and logarithmic Sobolev in-
equalities, J. Funct. Anal. 101 (1991) 194-211.

9. L. Damascelli, F. Pacella, M. Ramaswamy, Symmetry of Ground States of p-Laplace
Equations via the Moving Plane Method, Arch Rational Mech Anal 148 no. 4 (1999),
291–308.

10. L. Damascelli, M. Ramaswamy, Symmetry of C1 solutions of p-Laplace equations
in IRN , Preprint (2000).

11. M. Del Pino, J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and
application to nonlinear diffusions, Preprint (2001).

12. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061–1083.

13. M. Ledoux, The geometry of Markov diffusion generators, to appear in Ann. Fac.
Sci. Toulouse (2000).

14. H.A. Levine, An estimate for the best constant in a Sobolev inequality involving
three integral norms, Ann. Mat. Pura Appl.(4) 124 (1980), 181–197.

15. P.-L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case. I, Rev. Mat. Iberoamericana 1 no. 1 (1985), 45–121 & 145–201.

16. J. Serrin, M. Tang, Uniqueness for ground states of quasilinear elliptic equations, to
appear in Indiana Univ. Math. J.

17. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (IV) 110
(1976), 353–372.

18. P. Tolksdorf, Everywhere-regularity for some quasilinear systems with lack of ellip-
ticity, J. Diff. Equations 51 (1984) 126–150.
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