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1. Introduction and main result

Relative entropy methods have received a lot of attention in the last few years not only
in the context of linear parabolic equations [12,1] but also to handle nonlinear diffusion
problems [11,5,7,4,9] and get decay estimates and asymptotic diffusion results. The goal
of this letter is to give results on intermediate asymptotics for general nonlinearities. Here,
we are not concerned with existence questions (see for instance [4] for a discussion); in all
what follows we will assume that the solutions are such that the entropy function and its
first derivative are well defined.

Consider a solution u ∈ C0(IR+, L1
+(IRd)) of

ut = ∆f(u) , (1)

corresponding to an initial data u|t=0 = u0 ≥ 0 and define M = ‖u0‖L1(IRd). If the
nonlinearity is a power law, i.e. if f(u) = um, the time-dependent rescaling

u(t, x) = R−d(t) v

(

τ(t) ,
x

R(t)

)

(2)

transforms Equation (1) into a Fokker-Planck type equation, namely
vτ = ∆f(v) + ∇ · (xv) , (3)

provided τ(t) = log(R(t)), with v|τ=0 = u0 if R(0) = 1, and R(t) is a solution of

R′(t) = R(1−m)d−1 . (4)

Note that R(t) ∼ t
1

2+(m−1)d → +∞ as t → +∞ if m > (d − 2)/d.
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The question of finding intermediate asymptotics in L1 for a solution of Equation (1),
i.e. a function u∞(t, x) depending only on M = ‖u0‖L1(IRd) such that

‖um∧1(t, .) − um∧1
∞ (t, .)‖L1(IRd, dµ) = o

(

‖um∧1
∞ (t, .)‖L1(IRd, dµ)

)

= O(t−p(m)) (5)

where m∧1 denotes the minimum of m and 1 and dµ = v(m−1)+
∞ dx, is then transformed into

the question of finding the rate of convergence of a solution of (3) to the unique stationary

solution with same mass M : v∞(x) =
[

m−1
m

(

α∞(M) − 1
2
|x|2

)]1/(m−1)

+
if m > d−2

d
, m 6= 1,

with α∞(M) such that
∫

IRd v∞ dx = M (this solution is known as the Barenblatt-Prattle
solution; (m−1)·α∞(M) > 0) and v∞(x) = M

(2π)d/2 e
−|x|2/2 if m = 1. To prove such a result,

the main tool is the relative entropy Σ[v|v∞] =
∫

IRd σ
(

vm∧1

vm∧1
∞

)

vm∧1
∞ dµ+

∫

IRd
1
2
|x|2(v−v∞) dx,

where σ(u) = u log u if m = 1 (heat equation), σ(u) = mu1/m−u
1−m

+ 1 if m ∈
(

d−2
d

, 1
)

(fast

diffusion equation) and σ(u) = um−mu
m−1

+ 1 if m ∈ (1, +∞) (porous medium equation). In
this last case, one has to take into account an additional (nonnegative) term corresponding

to the integral of v |x|2

2
+ vm

m−1
on {x ∈ IRd : v∞(x) = 0}.

In case f(u) = um, the generalized Sobolev inequality (see [5,7,11,4]) gives an explicit
exponential decay of the relative entropy of a solution of Equation (3): Σ[v(τ, .)|v∞]
≤ Σ[u0|v∞] · e−2τ provided m ≥ d−1

d
. This is enough to prove that (5) holds with 2p(m) =

d(m − 1) + 1 using the Csiszár-Kullback inequality (see [6,10,2,7]):

Lemma 1.1 Let φ, φ0 ∈ L1
+(IRd, dµ). Then

∫

IRd σ
(

φ
φ0

)

φ0 dµ ≥ K
M
‖φ − φ0‖

2
L1(IRd,dµ)

with

M=max
{

‖φ‖L1(IRd, dµ), ‖φ0‖L1(IRd,dµ)

}

, K =min
{

inft∈[0,1] σ
′′(t), inf t≥0

θ∈[0,1]
σ′′(1 + θt)(1 + t)

}

,

as soon as σ is a convex function on IR+ such that 0 = σ(1) = minIR+ σ.

If f is not a power law, the scaling (2) gives an explicitly time-dependent evolution
equation for v

vτ = emdτ ∆f
(

e−dτv
)

+ ∇ · (xv) , (6)

and it is reasonable to expect that this equation will give the correct description of
the intermediate asymptotics of Equation (1) if R is given by (4), if f(0) = 0 and

limu→0+
f(u)
um ∈ (0, +∞). In order to extend the notion of relative entropy, we will as-

sume throughout this letter that f is strictly increasing in IR+:

f ′(s) > 0 in IR+ . (7)

It turns out that relative entropies are a well adapted tool even when the rescaled
equation is time-dependent and that the generalized Sobolev inequality (see [4]) can be
adapted to (6). To avoid a lengthy statement, we shall simply assume that f is chosen in
order that the following generalized Sobolev inequality holds: for any v ∈ D(IRd)

∫

IRd

(

vh(v) − f(v) +
1

2
|x|2v

)

dx − Cd

(

‖v‖L1(IRd)

)

≤
1

2

∫

IRd
v

∣

∣

∣

∣

∣

x +
f ′(v)

v
∇v

∣

∣

∣

∣

∣

2

dx, (8)

where h is a primitive of u 7→ f ′(u)/u, Cd(M) =
∫

IRd

(

v∞h(v∞) − f(v∞) + 1
2
|x|2v∞

)

dx

with v∞(x) = g
(

α∞(M) − 1
2
|x|2

)

, where g is the generalized inverse of h: g is extended
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by 0 on (−∞, 0), and by +∞ on (supIR+ h, +∞). Finally, by (7), α∞(M) is uniquely
determined by the condition

∫

IRd v∞(x) dx = M = ‖v‖L1(IRd).
Inequality (8) can, of course, be extended by a density argument to any measurable

function for which the integrals are well defined. For sufficient conditions for (8) to
hold, we refer to [4]. In particular, in the power law case one has to assume m ≥ d−1

d

(see [7,4]). If we denote by H the primitive of h satisfying H(u) = uh(u) − f(u), i.e.
H(s) =

∫ s
0 h(σ) dσ, we may define a relative entropy (which generalizes the one defined

in the power law case), with R = eτ , vR
∞(x) = Rdg

(

R−(m−1)d(αR
∞(M) − 1

2
|x|2)

)

such that

‖vR
∞‖L1(IRd) = ‖v‖L1(IRd), by

Σ[τ, v] = emdτ
∫

IRd

(

H(e−dτv) − H(e−dτvR
∞) +

1

2
|x|2(v − vR

∞)
)

dx .

We shall assume that f(s) = smF (s) with F ∈C0(IR+)∩C1(0, +∞),

F >0 , F (0) = 1 , F ′(s) = O(sk), k > −1, near s = 0 , s > 0 . (9)

Moreover, let us suppose that for all s > 0,

(m − 1)sh(s) − mf(s) ≤ 0 . (10)

This last assumption is satisfied for instance if F ′≤0 on (0, a) and F ′≥0 on (a, +∞) for
some a ∈ [0, +∞]. It covers nonlinearities which are sums of powers and also corresponds
to diffusive limits in semiconductors [3,8] or granular media models. Note that if initial
data u0 is a bounded function, the analysis which follows can be greatly simplified and in
particular, no assumption on the behavior at infinity of the nonlinearity f will be necessary
to prove the main results of this letter. In this case, convergence rates in the norm of L∞

will be also available, and hence, by interpolation, in Lp(IRd) for all p ∈ [1, +∞].

Theorem 1.2 Under assumptions (7), (9) and (10), if f is such that inequality (8) holds,
then for each solution v of (6), there exist constants K > 0, β = min{2, d(k + 1)} > 0
such that for all τ > 0,

0 ≤ Σ[τ, v] ≤ K e−βτ .

We may then prove a result on the intermediate asymptotics of Equation (1) under an
adequate assumption on the behavior of f at infinity:

ℓ1 := lim inf
s→+∞

f ′(s)sm−1 > 0 if m ∈ (1, 2) ; ℓ2 := lim inf
s→+∞

s H ′′(s)

|H ′(s)|3
> 0 if m ∈

(

d − 1

d
, 1

)

.

(11)

Theorem 1.3 Under the assumptions of Theorem 1.2, if f satisfies (11), then, with R
given by (4), we have as t → +∞

‖u(t, .) − u∞(t, .)‖L1(IRd, um−1
∞ dx) ≤ C (R(t))−d(m−1)−β

2 if 1 < m ≤ 2 ,

‖H(u)(t, .) − H(u∞)(t, .)‖L1(IRd, dx) ≤ C (R(t))−d(m−1)−β
2 if (d − 1)/d ≤ m < 1 .
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2. Proofs

We first prove Theorem 1.2 using the scaling properties of the generalized Sobolev
inequality, and then, Theorem 1.3.

Proof of Theorem 1.2. Let v be a solution of (6) and consider S(τ)=Rmd
∫

IRdH
(

v
Rd

)

dx

+
∫

IRd
1
2
|x|2v dx with R = eτ . A direct computation yields

dS

dτ
= dRmd

∫

IRd

(

(m − 1)
v

Rd
h
(

v

Rd

)

−mf
(

v

Rd

))

dx−
∫

IRd
v
∣

∣

∣

∣

x + R(m−1)df ′
(

v

Rd

)

∇v

v

∣

∣

∣

∣

2

dx .

(12)
Next, we may use the scaling properties of the generalized Sobolev inequalities:

Lemma 2.1 If f is a nonlinearity for which (8) holds, then for any R > 0

∫

IRd

(

RmdH
(

v

Rd

)

−RmdH

(

vR
∞

Rd

)

+
1

2
|x|2(v−vR

∞)

)

dx ≤
1

2

∫

IRd
v
∣

∣

∣

∣

x+R(m−1)df ′
(

v

Rd

)

∇v

v

∣

∣

∣

∣

2

dx

(13)

for any v ∈ D(IRd), where vR
∞(x) = Rdg

(

R−(m−1)d
(

αR
∞ − 1

2
|x|2

))

and αR
∞ = αR

∞(M) is

such that
∫

IRd vR
∞ dx = M = ‖v‖L1(IRd).

Proof of Lemma 2.1. Let f̃(u) = Rmdf
(

u
Rd

)

. Then with standard notations, f̃ ′(u) =

R(m−1)df ′
(

u
Rd

)

, h̃(u) = R(m−1)dh
(

u
Rd

)

and H̃(u) = RmdH
(

u
Rd

)

, and the generalized

Sobolev inequality (8) applied to f̃ gives the result. 2

With S∞(τ) := Rmd
∫

IRd H
(

vR
∞

Rd

)

dx +
∫

IRd
|x|2

2
vR
∞ dx, (10), (12) and (13) give

d

dτ
(S(τ) − S∞(τ)) + 2(S(τ) − S∞(τ)) ≤

d

dτ
(S∞(τ)) . (14)

Since vR
∞ is a critical point of

∫

IRd

(

RmdH( v
Rd ) + 1

2
v|x|2

)

dx under the constraint ‖v‖L1(IRd)

= M , d
dτ

S∞(τ) = dRmd
∫

IRd

(

(m − 1)vR
∞

Rd h
(

vR
∞

Rd

)

−mf
(

vR
∞

Rd

))

dx = O(R−d(k+1)) by our as-

sumptions on F , the r.h.s. in (14) is less than Ce−d(k+1)τ for some C > 0 and for τ large
enough. Integrating (14), we obtain |S(τ) − S∞(τ)| ≤ C e−max{2, d(k+1)}τ . 2

Proof of Theorem 1.3. We shall distinguish the cases m < 1 and m > 1.
Case 1 < m ≤ 2. By the definition of the function vR

∞ and the Taylor formula, we have

S(τ) − S∞(τ) =
1

2
R(m−2)d

∫

IRd

f ′(wR)

wR
(v − vR

∞)2 dx ,

with wR = θv + (1 − θ)vR
∞ for some function θ taking values in the interval [0, 1]. Let

L1 > 0 be such that for all s > L1, f ′(s) sm−1 > ℓ1/2 (see assumption (11)) and define
c1 := inf{s≤L1} f ′(s) s1−m, which is a positive number by our assumptions on F . Then, if
A1 := {x ∈ IRd : θv + (1 − θ)vR

∞ ≤ L1 Rd}, we find

S(τ) − S∞(τ) ≥
c1

2

∫

A1

(wR)
m−2

(v − vR
∞)2 dx +

ℓ1

2
R2(m−1)

∫

Ac
1

(wR)
−m

(v − vR
∞)2dx .
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But for R sufficiently large, on Ac
1, wR ≤ v, and hence, by Hölder’s inequality,

∫

Ac
1

(wR)
−m

(v − vR
∞)2 dx ≥

(

∫

Ac
1
|v − vR

∞| dx
)2

(
∫

IRd vm dx)−1. On the other hand, in the

set A1 we can use classical arguments (see [7] for instance) to obtain
∫

A1
(wR)

m−2
(v − vR

∞)2dx ≥
(

∫

A1
|v − vR

∞|(vR
∞)m−1dx

)2
(max {

∫

IRd vmdx,
∫

IRd vm
∞dx})−1. Fi-

nally, since the functions vR
∞ are uniformly bounded in L∞(IRd) for R large, we prove the

existence of C > 0 such that for R large enough

‖v − vR
∞‖

L1((vR
∞)m−1 dx)

≤ C max
{
∫

IRd
vm dx,

∫

IRd
vm
∞ dx

}1/2

R−β/2.

Case (d− 1)/d ≤ m < 1. Here we choose h(s) to be the primitive of f ′(s)/s which tends
to 0 as s goes to +∞. We may then rewrite S(τ) up to a constant as

S(τ) = Rmd
∫

IRd

(

H
(

v

Rd

)

− H ′

(

vR
∞

Rd

)

v

Rd

)

dx =
∫

IRd

(

w − R(m−1)dH ′

(

vR
∞

Rd

)

µ−1(w)

)

dx,

with w = µ(v) := RmdH
(

v
Rd

)

, v = RdH−1
(

w
Rmd

)

= µ−1(w). Using Taylor’s formula with
respect to w, we obtain

S(τ) − S∞(τ) =
1

2

∫

IRd
R−md

∣

∣

∣

∣

∣

H ′

(

vR
∞

Rd

)∣

∣

∣

∣

∣

·
H ′′

|H ′|3

(

µ−1(wR)

Rd

)

(w − wR
∞)2 dx ,

with wR
∞ = µ(vR

∞), wR = θw+(1−θ)wR
∞, for some θ with values in [0, 1]. Let us now choose

L2 > 0 such that for all s > L2, H ′′(s) s/|H ′(s)|3 > ℓ2/2 (see assumption (11)). By our
assumptions on F , if we define the set A2 := {x ∈ IRd : µ(L2 Rd) ≤ θµ(v)+(1−θ)µ(vR

∞) ≤
0}, then, on A2, 0 ≥ wR/Rd ≥ R(m−1)dH(L2) → 0, while on Ac

2 = IRd\A2, v ≥ µ−1(wR) at
least for R large enough. Also for R large enough, R(m−1)d|H ′(vR

∞/Rd)| ≥ m
2(1−m)

(vR
∞)m−1.

We can therefore find a positive constant C such that for τ large enough

S(τ) − S∞(τ) ≥ C
∫

A2

(vR
∞)m−1|wR|

1
m
−2(w − wR

∞)2 dx

+
ℓ2

2
R2(1−m)d

∫

Ac
2

m

2(1 − m)
(vR

∞)m−1 (w − wR
∞)2 |v|−1 dx .

The integral on A2 can be treated classically like in [7] to obtain

∫

A2

(vR
∞)m−1|wR|

1
m
−2(w − wR

∞)2dx ≥ C
(
∫

A2

|µ(v)−µ(vR
∞)|dx

)2

(max {‖µ(v)‖L1 ,‖µ(vR
∞)‖L1})−1 ,

for some C > 0. On the other hand, we notice that m− 1 < 0 and that the functions vR
∞

are uniformly bounded in L∞(IRd) for R large enough. Then, in the set Ac
2 we use the

Cauchy-Schwarz inequality

∫

Ac
2

(vR
∞)m−1|v|−1(w − wR

∞)2 dx ≥ M−1 ‖vR
∞‖m−1

L1

(

∫

Ac
2

|µ(v) − µ(vR
∞)| dx

)2

.

To finish the proof of Theorem 1.3, we have to make a change of variables to pass from
the rescaled function v solution of (6) to the unscaled solution u of (1), and we have also
to measure the rate of convergence of vR

∞ to v∞ .

5



In the case m > 1, we need only to control the norm ‖v∞ − vR
∞‖∞ since we have

AR :=‖v−v∞‖
L1((v∞)m−1dx)

≤ CM‖vm−1
∞ − (vR

∞)m−1‖
L∞(IRd)

+‖v−vR
∞‖

L1((vR
∞)m−1dx)

, and in

the case m < 1, the quantity to measure is BR := ‖µ(v∞) − µ(vR
∞)‖L1(IRd). In both cases

m > 1 and m < 1, using assumption (9) and the definition of v∞, vR
∞, α∞ and αR

∞, we can
prove that both AR and BR are bounded from above by CR−d(k+1) +C |α∞(M)−αR

∞(M)|,
where C = C(M, d) > 0. Actually, the second term is also of the order of R−d(k+1):

M =
∫

IRd
Rdg

(

R(1−m)d

(

αR
∞(M) −

|x|2

2

))

dx=
∫

IRd

(

m − 1

m

(

α∞(M) −
|x|2

2

)

+

)
1

m−1

dx ,

and R(1−m)d
(

αR
∞(M) − |x|2

2

)

tends to 0 (resp. −∞) when R → +∞ and m > 1 (resp.

m < 1). This and assumption (9) easily show that αR
∞ converges to α∞ as R goes to

+∞. Finally, by (9) h(u) = m
m−1

um−1(1 +O(|u|k+1)) as u → 0+ if m > 1 which ends the
proof of Theorem 1.3. 2
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