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Abstract. This report is devoted to a numerical study of the Keller-
Segel model in self-similar variables. We first parametrize the set of
solutions in terms of the mass parameter M ∈ (0, 8π) and consider the
asymptotic regimes for M small or M close to 8π. Next we introduce
the linearized operator and study its spectrum using various shooting
methods: we determine its kernel, the spectrum among radial functions
and use a decomposition into spherical harmonics to study the other
eigenvalues. As a result, we numerically observe that the spectral gap
of the linearized operator is independent of M and equal to 1, which is
compatible with known results in the limiting regime corresponding to
M → 0+, and with recent theoretical results obtained by the authors.
We also compute other eigenvalues, which allows to state several claims
on various refined asymptotic expansions of the solutions in the large
time regime.

In its simplest version, the parabolic-elliptic Keller-Segel model (also
known as the Patlak-Keller-Segel model, see [13, 10])















∂u
∂t = ∆u−∇ · (u∇v) x ∈ R

2 , t > 0

v = − 1
2π log | · | ∗ u x ∈ R

2 , t > 0

u(0, x) = n0 ≥ 0 x ∈ R
2

(1)

describes the motion of unicellular amoebae, like dictyostelium discoideum,
which move freely and diffuse. Here u denotes their spatial density and it
makes sense to consider them in a two-dimensional setting like the one of a
Petri dish. Under certain circumstances, they emit a chemo-attractant and
eventually start to aggregate by moving in the direction of the largest con-
centration of the chemo-attractant. This is modeled in the above equations
by the drift term ∇ · (u∇v). The life cycle of dictyostelium discoideum has
attracted lots of attention in the community of biologists. Trying to under-
stand the competition between the diffusion and the drift is a key issue in
the aggregation process, which has also motivated quite a few studies among
mathematicians interested in applications of PDEs to biology. See [14] for
a recent overview on the topic.
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An easy computation (see [14, pages 122–124] and [11]) shows that solu-
tions (with second moment initially finite) blow-up in finite time if the total
mass is large enough (larger than 8π with our conventions), that is they
describe an aggregate, while, for solutions with smaller masses, the diffusion
dominates the large time asymptotics.

More precisely, it has been shown in [9, 7, 4] that, for initial data n0 ∈
L1

+

(

R
2 , (1 + |x|2) dx

)

such that n0 |log n0| ∈ L1(R2) and M :=
∫

R2 n0 dx <
8π, there exists a solution u, in the sense of distributions, that is global
in time and such that M =

∫

R2 u(x, t) dx is preserved along the evolution.
There is no non-trivial stationary solution to (1) and any solution converges
to zero locally as time gets large. In order to study the asymptotic behavior
of u, it is therefore convenient to work in self-similar variables. In the space
and time scales given respectively by R(t) :=

√
1 + 2t and τ(t) := logR(t),

we define the rescaled functions n and c by

u(x, t) := R−2 n
(

R−1(t)x, τ(t)
)

and v(x, t) := c
(

R−1(t)x, τ(t)
)

.

This time-dependent rescaling is the one of the heat equation. Since the
nonlinear term is invariant under this rescaling, it is also present in the
rescaled system without time-dependent coefficient. This system can be
written as















∂n
∂t = ∆n+ ∇ · (nx) −∇ · (n∇c) x ∈ R

2 , t > 0

c = − 1
2π log | · | ∗ n x ∈ R

2 , t > 0

n(0, x) = n0 ≥ 0 x ∈ R
2

(2)

and it has been shown in [4] that n and ∇c converge as t → ∞, respectively
in L1(R2) and L2(R2) to a unique stationary solution given by smooth and
radially symmetric functions.

In this report, we are interested in estimating the rate of convergence
towards the stationary solution in self-similar variables. After undoing the
change of variables, this gives the rate of convergence towards the asymp-
totic profile for the solutions of (1). Existence of a stationary solution to (2)
has been established in [1] by ODE techniques, and in [12] by PDE methods.
The uniqueness has been shown in [2]. In [3], it has been proved that if M
is less than some mass M∗ ∈ (0, 8π), then convergence holds at an expo-
nential rate, which is essentially governed by the linearization of System (2)
around the stationary solution. However, the estimate of the value of M∗

was found to be significantly smaller than 8π. In the radially symmetric set-
ting, V. Calvez and J.A. Carrillo have found in [5] that the rate measured
with respect to Wasserstein’s distance does not depend on the mass, in the
whole range (0, 8π). Refined estimates have recently been established in [6],
in which the functional setting for the linear operator has also been properly
characterized. We will recover all these results numerically and give more
detailed estimates on the asymptotic behavior of the solutions.
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Consider the unique stationary solution to (2), which is characterized as
the solution to

(3) − ∆c = n = M
e−

1

2
|x|2+c

∫

R2 e
− 1

2
|x|2+c dx

, x ∈ R
2

for any given mass M ∈ (0, 8π). The bifurcation diagram of the solutions in
terms of the parameter M will be considered in Section 1.

Next, consider f and g such that n (1 + f(x, t)) and c(x) (1 + g(x, t)) is a
solution to (2). Then (f, g) solves the nonlinear problem

{

∂f
∂t − L f = − 1

n ∇ · [f n (∇(g c))] x ∈ R
2 , t > 0

−∆(c g) = f n x ∈ R
2 , t > 0

where L is the linear operator defined by

L f =
1

n
∇ · [n∇(f − c g)]

and we know that (f n,∇(g c))(t, ·) has to evolve in L1(R2) × L2(R2), and
asymptotically vanish as t → ∞. To investigate the large time behavior, it
is convenient to normalize the solution differently. What we actually want
to investigate is the case where solutions of (2) can be written as

n(x) (1 + ε f(x, t)) and c(x) (1 + ε g(x, t))

in the asymptotic regime corresponding to ε → 0+. Formally, it is then

clear that, at order ε, the behavior of the solution is given by ∂f
∂t = L f .

The kernel of L has been identified in [6]. It has also been shown that L has
pure discrete spectrum and that 1 and 2 are eigenvalues. In this report, our
goal is to identify the lowest eigenvalues and recover that the spectral gap is
actually equal to 1, whatever the mass is in the range M∗ ∈ (0, 8π). We will
also establish the numerical value of other eigenvalues of L at the bottom of
its spectrum in Section 3, and draw some consequences in the last section
of this report: improved rates of convergence for centered initial data and
faster decay rates for best matching self-similar solutions.

1. Bifurcation diagram and qualitative properties of the

branch of solutions corresponding to M ∈ (0, 8π)

We can numerically solve (3) among radial solutions as follows. Let

φ(r) = b+ c(x)

for some b ∈ R, r = |x|, for any x ∈ R
2, such that

M
e−b

∫

R2 e
− 1

2
|x|2+c dx

= 1 ⇐⇒ b = logM − log

(
∫

R2

e−
1

2
|x|2+c dx

)

.

Then the function r 7→ φ(r) solves

−φ′′ − 1

r
φ′ = e−

1

2
r2+φ , r > 0
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Figure 1. The density na as a function of r = |x| for a =
−2.3, −1.9,...−0.2, 0.1, 0.4, 0.7... 2.5.

with initial conditions φ(0) = a, φ′(0) = 0. To emphasize the dependence in
a ∈ R, we will denote the solution by φa. Since

1 = M
1

∫

R2 e
− 1

2
|x|2+b+c dx

=
M

2π
∫ ∞
0 r e−

1

2
r2+φ dr

,

all radial solutions of (3) can therefore be parametrized by a ∈ R, using
M = M(a) with

M(a) := 2π

∫ ∞

0
e−

1

2
r2+φa dr .

The density

na(x) := M(a)
e−

1

2
|x|2+ca

∫

R2 e
− 1

2
|x|2+ca dx

, x ∈ R
2

can be directly computed as

na(x) = M(a)
e−

1

2
r2+φa(r)

2π
∫ ∞
0 r e−

1

2
r2+φa dr

= e−
1

2
r2+φa(r)

with r = |x| (see Fig. 1).
Moreover it is clear that c in (3) is determined only up to the addition of

a constant. This constant can be fixed by assuming that

lim
|x|→∞

(

c(x) +
M

2π
log |x|

)

= 0 ,

and we will denote by ca the corresponding solution. Hence, with

b(a) := lim
r→∞

(

φa(r) +
M(a)

2π
log r

)

we finally recover that

ca(x) = φa(|x|) − b(a)
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Figure 2. The function ca as a function of r = |x| for a =
−2.3, −1.9,... 2.5.

(see Fig. 2).
The above considerations allow to parametrize by a the bifurcation dia-

gram of the solutions of (3) in L∞(R2) in terms of the mass M : see Figs. 3
and 4.
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Figure 3. The bifurcation diagram associated to solutions
of (3) can be parametrized by a 7→ ( 1

2π M(a), ‖ca‖L∞(R2)).
Here ‖ca‖L∞(R2) = ca(0) = a − b(a). Such a diagram is
qualitatively very similar to the one of the Keller-Segel system
in a ball with no flux boundary conditions.
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Figure 4. The mass can be computed as

M(a) = 2π

∫ ∞

0
na(r) r dr .

Plot of a 7→ 1
8π M(a).

2. Asymptotic regimes

Before studying the eigenvalue problem associated to L, it makes sense
to investigate the limiting behaviors of the solutions of (3) as a → +∞
and a → 0, in order to check the accuracy of our numerical approach. The
regime a → +∞ is by itself interesting. Roughly speaking, concentration,
which is numerically observed as the mass M approaches 8π, suggests that
for M = 8π the limiting problem is governed by the stationary solutions
of (1). This is indeed what occurs and is confirmed by a simple asymptotic
expansion.

2.1. The large, positive a regime. It can be numerically observed in
Fig. 3 that

lim
a→+∞

M(a) = 8π .

With λ(a) = 2
√

2 e−a/2, we moreover observe that λ(a)2 na(λ(a)x) con-
verges as a→ +∞ to

n⋆(x) :=
8

(1 + |x|2)2 , x ∈ R
2

which is the well known solution to the unscaled Keller-Segel model with
mass 8π =

∫

R2 n⋆ dx. See Fig. 5.
The following asymptotics are not very difficult to recover heuristically.

Let

c⋆(x) := −2 log(1 + |x|2) , x ∈ R
2
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Figure 5. The a → +∞ case. As a function of r = |x|,
λ(a)2 na(λ(a)x) is plotted in blue for a = −2, −1.5,... 5,
while the limiting profile r 7→ n⋆(r) is shown in red.

and observe that c⋆ solves

−∆c⋆ = 8π
ec⋆

∫

R2 ec⋆ dx
= n⋆

with 8π ec⋆/
∫

R2 e
c⋆ dx = n⋆. Actually all radial solutions of the above

equation are of the form x 7→ (λ2 n⋆(λx), c⋆(λx) + µ) for any λ > 0 and
µ ∈ R. Now, for our special choice of c⋆, we have

∫

R2 e
c⋆ dx = π, and hence

c⋆ is the unique solution to

−∆c⋆ = 8 ec⋆

such that c⋆(0) = 0. Let ψa(r) := φa(λ r) − a and observe that

−ψ′′
a −

1

r
ψ′
a = eψa+a+2 log λ+ λ2

2
r2 = 8 eψa+ λ2

2
r2

if λ = λ(a) = 2
√

2 e−a/2. Hence, since ψa(0) = 0 and lima→∞ λ(a) = 0, it
is clear that ψa converges to c⋆. This justifies the fact that λ(a)2 na(λ(a) ·)
converges to n⋆ as a→ +∞.

2.2. The large, negative a regime. When a → −∞, it is elementary to
observe that a− φa(r) ∼ ea ψ(r) where ψ solves

−ψ′′ − 1

r
ψ′ = e−

1

2
r2

with ψ(0) = ψ′(0) = 0. Integrating this equation, we find that

2ψ(r) :=

∫ r2/2

0

(

1 − e−s
) ds

s
= γ + Γ(0, 1

2 r
2) − log 2 + 2 log r .

Here Γ(x, y) =
∫ +∞
y tx−1 e−t dt is the Incomplete Gamma Function and γ ≈

0.577216 is Euler’s constant. See Fig. 6.
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Figure 6. The a→ −∞ case. The function e−a (a− φa) as
a function of r = |x| for a = −5, −4.5,... 5 and the limiting
profile r 7→ ψ(r) (in red).

3. Linearization and spectral gap

Consider the linearized Keller-Segel operator L introduced at the begin-
ning of this report. Since the function na is involved in the linearization, to
emphasize the dependence in the parameter a, we shall use the notation La.
Recall that this operator is defined by

La f :=
1

na
∇ · [na∇(f − ϕf )] , x ∈ R

2

where

−∆ϕf = na f .

3.1. Kernel of La. A derivation of φa with respect to a provides a solution
to La f = 0, f(0) = 1, f ′(0) = 0. By the Cauchy-Lipschitz theorem (and
an appropriate analysis at r = 0), this solution is unique. See [6] for more
details. Hence we have found a solution fa of

−f ′′a − 1

r
f ′a = e−

1

2
r2+φfa fa , r > 0

with initial conditions fa(0) = 1 and f ′a(0) = 0, which generates Ker(La).
See Figs. 7 and 8 for some plots of the solution for various values of a.

3.2. Non-zero eigenvalues of La. According to [6], La has no continuous
spectrum. All non-zero eigenvalues of −La are positive and hence there is a
positive spectral gap that can be fully determined using a decomposition in
spherical harmonics: for a given a ∈ R, the spectrum is obtained by solving
the radial eigenvalue problems

−L(k)
a fk,ℓ = λk,ℓ fk,ℓ , ℓ ∈ N
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Figure 7. The function fa as a function of r = |x| for a =
−3, −2,... 10.
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Figure 8. The density fa na as a function of r = |x| for
a = −3, −2,... 10.

where, for any k ∈ N,

−L(k)
a f = −f ′′ − 1

r
f ′ +

k2

r2
f + (r − c′a) (f ′ − ψ′) − na f

and, with previous notations, ψ = ca g is obtained as the solution to

−ψ′′ − 1

r
ψ′ +

k2

r2
ψ = na f .

Here we draw the attention of the reader about the numbering of the
eigenvalues, which differs from the one adopted in [6].

3.3. Spectrum of La restricted to radial functions. To determine the

spectrum of L(0)
a , we can use a simple shooting method that goes as follows.

Owing to the fact that if λ is an eigenvalue, then limr→∞ f(r) = 0, we solve
the equation

L(0)
a f + λ f = 0
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with initial conditions f(0) = 1 and f ′(0) = 0. We numerically recover that

λ = 0 is an eigenvalue and find that the lowest non-zero eigenvalue of −L(0)
a

is exactly 2. See Figs. 9–13. This is consistent with the results of [5].

2 4 6 8 10
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45

Figure 9. Plot of λ 7→ log
(

1 + f(λ,R)2
)

with R = 7, a = 1,

where r 7→ f(λ, r) is the solution to L(0)
a f+λ f = 0 such that

f(0) = 1 and f ′(0) = 0. Each local minimum corresponds to
an eigenvalue in the limit R → ∞. First minima (from the
left) are located exactly at λ = 0 and λ = 2.
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Figure 10. Plot of r 7→ na(r) and r 7→ na(r) f(r) for a = 1,
λ = 2. The eigenfunction f changes sign once. The total
mass for a = 1 is M(a) = 2π

∫ ∞
0 na(r) r dr ≈ 9.10875.
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Figure 11. Lowest eigenvalues in the spectrum in L(0)
a , as

a function of M = M(a).
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Figure 12. Detail of the plots of r 7→ na(r) and r 7→
na(r) f(r) for a = 1, λ ≈ 4.1944. The eigenfunction f
changes sign twice.
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Figure 13. Detail of the plots of r 7→ na(r) and r 7→
na(r) f(r) for a = 1, λ ≈ 6.27881. The eigenfunction f
changes sign three times.

3.4. Spectrum of L(1)
a : the k = 1 component of the spectrum. By

construction, we know that the spectrum sp(La) of La can be decomposed
using the spherical harmonics decomposition as

sp(La) =
⋃

k∈N

sp
(

L(k)
a

)

where

sp
(

L(k)
a

)

= (λk,ℓ)ℓ∈N

for any k ∈ N. Recall that {λ0,0} corresponds to the kernel of La:

λ0,0 = 0 .

Moreover, we know that these spectra are ordered, in the sense that

λk1,ℓ ≤ λk2,ℓ if k1 ≤ k2 .

As a consequence, to determine the spectral gap, we only need to find the
minimum of λ0,1 and λ1,0.

Numerically, we have observed that λ0,1 = 2 is an eigenvalue. This mode
associated is to dilations. The mode associated to translations is in the
component k = 1 and corresponds to an eigenvalue λ1,ℓ = 1, for some
ℓ to be determined. See [6] for the justification of the role of dilations
and translations, and Section 4 for more detailed comments. Let us check
numerically that ℓ = 0 (i.e. that there is no other mode in the component
k = 1 corresponding to an eigenvalue in (0, 1)), so that the spectral gap is

λ1,0 − λ0,0 = 1

and that this holds true for any value of a ∈ R.
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For this purpose, we determine (λk,ℓ)ℓ∈N by solving the system of ODEs

−f ′′ − 1

r
f ′ +

k2

r2
f + (r − c′a) (f ′ − ψ′) − na f = λ f ,

−ψ′′ − 1

r
ψ′ +

k2

r2
ψ = na f .

Boundary conditions have to be determined appropriately. Let us focus on
the case k = 1. We may fix f(0) = 0, f ′(0) = 1 and ψ(0) = 0 without
restriction. However, p = −ψ′(0) has to be determined, and this cannot be
done by a simple Taylor expansion around r = 0+, as can be checked to the
price of a painful computation, that we shall omit here. A numerical scheme
has therefore to be invoked.

Before doing so, let us make an ansatz, which turns out to be very
convenient. For the special choice of ψ′(0) = − ea

ea+2 , we can plot λ 7→
log

(

1 + f(λ,R)2
)

as for the case k = 0. See Fig. 14. An explanation for
this ansatz will be given below. The lowest eigenvalue found in the frame-
work of this ansatz has the value 1 and corresponds to

f(r) = v′a(r) − r , ψ(r) = c′a(r) ∀ r > 0 .
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25
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45

50

Figure 14. Plot of λ 7→ log
(

1 + f(λ,R)2
)

with R = 7, a =

1, where r 7→ f(λ, r) is the solution to L(1)
a f + λ f = 0 such

that f(0) = 1, f ′(0) = 0, ψ(0) = 0 and ψ′(0) = − ea

ea+2 . In

the limit R→ ∞, the first minimum (from the left) is located
exactly at λ = 1. However, because of the ansatz, we have
no guarantee that there is no other eigenvalues, or even that
the other minima are actually eigenvalues. With R = 7, the
second minimum (from the left) is achieved for λ ≈ 3.22762.
See Fig. 15.

Now let us come back to the general case. For a given a and λ, we
can consider the function which associates to a given p > 0 the value of

h(a, λ, p,R) :=
∫ R
0 (|f ′|2 + |f |2)na r dr, for R large enough. See Fig. 16.
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Figure 15. Case R = 7, a = 1 and λ ≈ 3.23. One has
to test if the solution to the ODE system with same ansatz
as in Fig. 14 is in the space H1(0,∞;na r dr). The plot of
r 7→ (|f ′|2 + [f |2)na is shown above. Clearly the solution
found numerically is admissible.
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Figure 16. Plot of p 7→ log(1 + h(a, λ, p,R)2) for a = 1,
λ = 0.5. The difficulty comes from the instability of the solu-
tions with respect to the parameters λ and p. If the function f
is not in the space H1(0,∞;na r dr), then h(a, λ, p,R)2 uni-
formly diverges as R → +∞. A possible method is there-
fore to find the value of p that realizes the minimal value
of h(a, λ, p,R)2 for a given R > 0, and then select for
which value of λ this quantity converges to a finite value as
R → +∞. In practice, only rather small values of R can
be taken into account, which makes the method inaccurate.
Here R = 3.

The main advantage in the approach used for plotting Fig. 14 is that
the expression of ψ′(0) was explicitly known in terms of a, at least for one
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solution. This, however, suggests a new shooting criterion, which goes as
follows.

Solutions corresponding to k = 1 have to solve the Poisson equation

−∆
(

ψ(r)
x1

r

)

= na(r) f(r)
x1

r
, r = |x| , x = (x1, x2) ∈ R

2

with i = 1, 2, and can be expressed as

Ψ(x) := ψ(r)
x1

r
= − 1

2π

∫

R2

log |x− y| ∗ na(|y|) f(|y|) y1

|y| dx .

Consider the case i = 1 and let θ ∈ [0, 2π) be such that x1

r = cos θ.

(1, 0) · ∇Ψ(0) = ψ′(0) = − 1

2π

∫ 2π

0
cos2 θ dθ

∫ ∞

0
na(r) f(r) dr

= −1

2

∫ ∞

0
na(r) f(r) dr .

Notice that
∫ ∞

0
na(r) f(r) dr =

∫

R2

na(|x|) f(|x|)
2π |x| dx .

This observation provides a new shooting criterion (see Figs. 17 and 18):
any solution has to satisfy the condition

s(a, λ, p) = 0 where s(a, λ, p) :=

(

2 p +

∫ ∞

0
na(r) f(r) dr

)2

,

where f and ψ are solutions with f(0) = 0, f ′(0) = 1, ψ(0) = 0 and
p = −ψ′(0). Notice that we recover that ψ′(0) = 1

2 e
a if f(r) = φ′(r) − r,

with f(0) = 0 and f ′(0) = φ′′(0) − 1 = −(1 + 1
2 e

a), or, if we impose
f ′(0) = 1 (which can always be done because we solve a linear problem),
ψ′(0) = − ea

ea+2 .

0.5 1.0 1.5 2.0
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10

15

Figure 17. Plot of p 7→ s(a, λ, p) for a = 1 and λ = 1. We
numerically recover the fact that p = ea

ea+2 ≈ 0.576117.
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0.6

0.8

1.0

Figure 18. Solving s(a, λ, p) = 0 determines p = p(a, λ).
Here is shown the plot of λ 7→ p(a, λ) for a = 1.

By considering a shooting criterion similar to the one for k = 0, we

obtain the spectrum of −L(1)
a . See Fig. 19. This completes the study of

the spectrum corresponding to k = 1. Plotting the spectrum of −L(1)
a as a

function of a, or equivalently as a function of the mass M can now be done:
see Figs. 19 and 20.

-1 1 2 3 4 5 6

20

25

30

35

40

45

Figure 19. Plot of λ 7→ log
(

1 + f(λ,R)2
)

with R = 7,
a = 1, where r 7→ f(λ, r) is the solution to

L(1)
a f + λ f = 0

such that f(0) = 1 and f ′(0) = 0, ψ(0) = 0 and ψ′(0) =
−p(a, λ). In the limit R → ∞, the first minimum (from the
left) is located exactly at λ = 1. Each minimum determines

an eigenvalue of −L(1)
a .
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Figure 20. Lowest eigenvalues of −L(1)
a as a function of

M(a). Missing values corresponding to λ = 1 are due to
numerical errors.

Wit these results in hands, it is easy to check that λ1,0 = 1 for any
M ∈ (0, 8π). As a consequence, the spectral gap of −La is λ1,0 − λ0,0 = 1.
See Fig. 21.

5 10 15 20 25

1

2

3

4

5

6

7

Figure 21. Results of Figs. 11 and 20 are shown on a single
picture. The lowest eigenvalues of −La are therefore 0, 1
and 2, thus establishing that the spectral gap of −La is 1.
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For higher values of k, that is k ≥ 2, the same numerical methods than for
k = 1 holds. Numerically we observe (see Fig. 22) that the lowest eigenvalue
for k = 2 is λ2,0 which takes values larger than 4. The branch originates
from λ = 4 when M → 0+.

As a consequence, the lowest eigenvalues of L are

λ0,0 = 0 < λ1,0 = 1 < λ0,1 = 2 < 3 < λ1,1 < λ0,2 < λ2,0

but λ1,1 is not constant as M varies in (0, 8π).

5 10 15 20 25

1

2

3

4

5

6

7

Figure 22. Lowest eigenvalues, for k = 0 (blue), k = 1
(red) and k = 2 (brown).

4. Concluding remarks

From a physics viewpoint, understanding why 0, 1 and 2 are eigenvalues
is not very difficult.

(1) The stationary solution depends on the mass. Differentiating the
equation with respect to the mass parameter immediately provides
an element of the kernel, which turns out to be one-dimensional
as can be shown by elementary considerations (uniqueness of the
solution to an ODE by the Cauchy-Lipschitz theorem). As far as we
are interested in the long time asymptotics of the solutions to (2),
such a degree of freedom is not relevant for the evolution problem
because the conservation of mass uniquely determines the limiting
stationary solution.

(2) The Keller-Segel model before rescaling is an autonomous system: it
does not depend explicitly on x. Any translation of the initial datum
gives rise to a solution to the evolution problem translated by the
same quantity, and it is straightforward to realize that the position
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of the center of mass is preserved along the evolution. In the rescaled
variables, it is clear that a solution corresponding to an initial da-
tum made of a decentered self-similar profile exponentially converges
towards the same self-similar profile, but centered. When lineariz-
ing, this provides an eigenmode (that can be computed by applying
the operators which infinitesimally generate the translations, ∂/∂x1

or ∂/∂x2) and a direct computation shows that the corresponding
eigenvalue is 1.

(3) The reason why x · ∇ also generates an eigenmode is slightly more
subtle. In the original variables, the self-similar solutions explicitly
depend on t, and a shift in t amounts to a scaling of the self-similar
solutions. Notice indeed that a solution translated in t is still a
solution. Once the self-similar change of variables has been done,
any shift with respect to t amounts to a scaling on the solution and
thus explains why 2 is an eigenvalue.

More details on mathematical aspects of these observations can be found
in [6]. Hence it is easy to understand why 0, 1 and 2 are eigenvalues,
independently of the mass M . We have moreover identified the invariances
that explain such facts. In the limit M → 0+, it has been observed in [3]
that the spectrum of L is the same as the Fokker-Planck operator.

It has been stablished in [6] that the spectrum of L governs the rate of
convergence of the solutions to (2): for any M ∈ (0, 8π), if n0 ∈ L2

+(n−1 dx)
and M :=

∫

R2 n0 dx < 8π, then any solution to (2) with initial datum n0

satisfies
∫

R2

|n(t, x) − n∞(x)|2 dx

n∞(x)
≤ C e− 2λ t ∀ t ≥ 0

for some positive constant C, where n∞ is the unique stationary solution
to (2) with mass M and

λ = λ1,0 = 1 ,

provided the following technical condition is satisfied

∃ ε ∈ (0, 8π −M) such that

∫ s

0
u0,∗(σ) dσ ≤

∫

B
“

0,
√
s/π

”

n∞,M+ε(x) dx

for any s ≥ 0. Here u0,∗(σ) stands for the symmetrized function associated
to n0.

If additionally the initial datum satisfies
∫

R2 xn0 dx = 0, then

λ = λ0,1 = 2 .

Based on a similar approach that has been developed in the framework of the
fast diffusion equation in [8], we can even define the best matching asymptotic
profile as the function ñ∞(t, x) = n∞,σ(t)(x) where n∞,σ := σ2 n∞(σ·) and
σ = σ(t) realizes the infimum

µ 7→
∫

R2

|n(t, x) − n∞,µ(x)|2
dx

n∞,µ(x)
.
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If
∫

R2 xn0 dx = 0, then it follows from an analysis similar to the one of [8]
that

∫

R2

|n(t, x) − ñ∞(x)|2 dx

ñ∞(x)
≤ C e− 2λ1,1 t ∀ t ≥ 0

and our numerical results show that λ1,1 ≥ 3.
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[9] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial

differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992),
pp. 819–824.

[10] E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an insta-

bility, Journal of Theoretical Biology, 26 (1970), pp. 399–415.
[11] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv.

Math. Sci. Appl., 5 (1995), pp. 581–601.
[12] Y. Naito and T. Suzuki, Self-similar solutions to a nonlinear parabolic-elliptic

system, in Proceedings of Third East Asia Partial Differential Equation Conference,
vol. 8, 2004, pp. 43–55.

[13] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys.,
15 (1953), pp. 311–338.

[14] B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser
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de Chile, Casilla 170 Correo 3, Santiago, Chile


	1. Bifurcation diagram and qualitative properties of the branch of solutions corresponding to M in (0,8pi)
	2. Asymptotic regimes
	2.1. The large, positive a regime
	2.2. The large, negative a regime

	3. Linearization and spectral gap
	3.1. Kernel of La
	3.2. Non-zero eigenvalues of La
	3.3. Spectrum of La restricted to radial functions
	3.4. Spectrum of 1/La: the k=1 component of the spectrum

	4. Concluding remarks
	References

