Conference paper Open Access

Bicameral Mesh Anisotropy

Mukherjee, Nilanjan; Makem, Jonathan; Cabello, Jean


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">bicameral anisotropy</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">soft-point</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">virtual-vertex</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">sub-edge</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">advancing front</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">loop-segment</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">paving</subfield>
  </datafield>
  <controlfield tag="005">20200207072048.0</controlfield>
  <controlfield tag="001">3653405</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">October 14-17, 2019</subfield>
    <subfield code="g">IMR</subfield>
    <subfield code="a">28th International Meshing Roundtable</subfield>
    <subfield code="c">Buffalo, New York, USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Siemens PLM Software</subfield>
    <subfield code="a">Makem, Jonathan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Siemens PLM Software</subfield>
    <subfield code="a">Cabello, Jean</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">7960076</subfield>
    <subfield code="z">md5:97faa24125bb169f472dcb8299a01f58</subfield>
    <subfield code="u">https://zenodo.org/record/3653405/files/15-Mukherjee.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://imr.sandia.gov</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-imr28</subfield>
    <subfield code="o">oai:zenodo.org:3653405</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Siemens PLM Software</subfield>
    <subfield code="a">Mukherjee, Nilanjan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Bicameral Mesh Anisotropy</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-imr28</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This paper discusses a new approach to controlling 2D local sizing in a bicameral anisotropic mesh. We define bicameral anisotropy as a mesh size variation of two distinctly different types in two separate chambers or subdomains. The first chamber is controlled by constant to linear local size functions. The second subdomain is governed by a nonlinear sizing function leading to transitioning meshes. A controlled advancing front approach is proposed for both triangular and quadrangular meshes with the singular goal of ensuring a high local quality metric in the first chamber. An H-shock sizing scheme governs the second chamber. Virtual mesh topology is constructed at the face boundary both at geometry and nodeloop levels to facilitate this type of bicameral meshing. Results clearly indicate the efficacy of the proposed approach leading to both a well controlled desired size field and high local element quality.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3653404</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3653405</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
50
52
views
downloads
All versions This version
Views 5050
Downloads 5252
Data volume 413.9 MB413.9 MB
Unique views 4646
Unique downloads 4747

Share

Cite as