Conference paper Open Access

Anisotropic Error Estimate for High-Order Parametric Surface Mesh Generation

Feuillet, Rémi; Coulaud, Olivier; Loseille, Adrien


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Surface mesh generation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">High-order error estimates</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">High-order mesh generation</subfield>
  </datafield>
  <controlfield tag="005">20200207072049.0</controlfield>
  <controlfield tag="001">3653371</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">October 14-17, 2019</subfield>
    <subfield code="g">IMR</subfield>
    <subfield code="a">28th International Meshing Roundtable</subfield>
    <subfield code="c">Buffalo, New York, USA</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Cenaero</subfield>
    <subfield code="a">Coulaud, Olivier</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institut national de recherche en informatique et en automatique</subfield>
    <subfield code="a">Loseille, Adrien</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">10331495</subfield>
    <subfield code="z">md5:9fb09147e75d2d5ee8e90cdf21b8401e</subfield>
    <subfield code="u">https://zenodo.org/record/3653371/files/05-Feuillet.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://imr.sandia.gov</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-imr28</subfield>
    <subfield code="o">oai:zenodo.org:3653371</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Institut national de recherche en informatique et en automatique</subfield>
    <subfield code="a">Feuillet, Rémi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Anisotropic Error Estimate for High-Order Parametric Surface Mesh Generation</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-imr28</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Parametric surface mesh generation is one of the crucial step of the computational pipeline. Standard techniques, that are now mature, control the deviation to the tangent plane by using intrinsic quantities as the minimum and maximum curvatures. However, for high-order meshes, deriving intrinsic quantities that have the ability to control the mesh generation process is much more challenging. Indeed, those provided by the first and second fundamental forms of a surface are not sufficient when high order curved meshes are employed. In this paper, we introduce a new set of error estimates for high-order surface mesh generation. It is based on performing a Taylor expansion of the underlying surface in the tangent plane. The independence to the parametric space is obtained by using an inversion formula. High-order terms of this expansion are then used to derive an optimal metric by using the log-simplex approach. Examples are shown to prove the efficiency of the method.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3653370</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3653371</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
67
46
views
downloads
All versions This version
Views 6767
Downloads 4646
Data volume 475.2 MB475.2 MB
Unique views 6363
Unique downloads 4444

Share

Cite as