Conference paper Open Access

Deep-Learning and HPC to Boost Biomedical Applications for Health (DeepHealth)

Monica Caballero; Jon Ander Gómez; Aimilia Bantouna

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">libraries;europe;medical services;predictive models;medical diagnostic imaging;software</subfield>
  <controlfield tag="005">20200205072051.0</controlfield>
  <controlfield tag="001">3636402</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="g">CBMS</subfield>
    <subfield code="a">2019 IEEE 32nd International Symposium on Computer-Based Medical Systems</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universitat Politècnica de València (UPV)</subfield>
    <subfield code="a">Jon Ander Gómez</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">WINGS ICT Solutions</subfield>
    <subfield code="a">Aimilia Bantouna</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">517544</subfield>
    <subfield code="z">md5:b968a955b1025344be9b13059ee670d3</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-05</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-deephealth</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">150-155</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">everis Spain</subfield>
    <subfield code="0">(orcid)0000-0002-5723-249X</subfield>
    <subfield code="a">Monica Caballero</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Deep-Learning and HPC to Boost Biomedical Applications for Health (DeepHealth)</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-deephealth</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825111</subfield>
    <subfield code="a">Deep-Learning and HPC to Boost Biomedical Applications for Health</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Free for private use; right holder retains other rights, including distribution</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The paper introduces the DeepHealth project: &amp;quot;Deep-Learning and HPC to Boost Biomedical Applications for Health&amp;quot;. This project is funded by the European Commission under the H2020 framework program and aims to reduce the gap between the availability of mature enough AI-solutions and their deployment in real scenarios. Several existing software platforms provided by industrial partners will integrate state-of-the-art machine-learning algorithms and will be used for giving support to doctors in diagnosis, increasing their capabilities and efficiency. The DeepHealth consortium is composed by 21 partners from 9 European countries including hospitals, universities, large industry and SMEs.&lt;/p&gt;

&lt;p&gt;This document is an accepted paper published using the Green Open Access Model. Published paper available at&amp;nbsp;&lt;a href=""&gt;;/a&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;copy; 2019&amp;nbsp;IEEE.&amp;nbsp; Personal use of this material is permitted.&amp;nbsp; Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.&amp;rdquo;&lt;/p&gt;</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/CBMS.2019.00040</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
Views 233
Downloads 198
Data volume 102.5 MB
Unique views 195
Unique downloads 194


Cite as