
Tijs van der Storm, Pablo Inostroza Valdera, CWI

Before starting coding, make sure you have opened a Rascal console associated with the project
RascalQLTutorial (right-click on any Rascal file in the project and select 'Start console'). Then, in

the console, do:

import exercises::ImportThis;
import exercises::Snippets;

past statements from exercises/Snippets.rsc and see what happens.

The exercises can be complete by directly editing exercises/Part1.rsc and exercises/Part2.rsc.

(See http://c2.com/cgi/wiki?FizzBuzzTest)

Write a program that prints the numbers from 1 to 100. But for multiples of three print “Fizz” instead of
the number and for the multiples of five print “Buzz”. For numbers which are multiples of both three and
five print "FizzBuzz".

Tips

[1..101] gives the list [1,2,3,...,100]
use println to print.

Add an unless statement which is to be used similar to ifThen statements:

unless (x > 1) { "What is your age?" age: int }

add a production to Question in QL.rsc
add a constructor to Question in AST.rsc
add a tc rule to the type checker in Check.rsc
add a normalize rule to the normalize in Normalize.rsc (NB: the semantics of unless(e, s) is
equivalent to if(not(e), s))

Hack your DSL with Rascal: Exercises

Part I

0. FizzBuzz

1. Adding unless

Check in the IDE that the type checker indeed signals errors in unless conditions and bodies, and that
its conditions appear in the outliner.

Tip

implement unless analogous to ifThen in all cases

Optional Exercises

a. change the typechecker so that a warning is issued in the case of
ifThen(not(_), ...) .

b. fix the outliner (Outline.rsc) so that unless conditions appears in the outline.
c. fix the formatter (Format.rsc)to pretty print unless .

Add support for date valued questions:

add syntax to QType to allow date fields (Lexical.rsc)
add new QType constructor for date types (AST.rsc)
add new case to type2widget in Compile.rsc to generate DateValueWidgets (see
resources/js/framework/value-widgets.js)

Add conditional expression x ? y : z

add production to Expr (QL.rsc)

Make sure it's low in the priority hierarchy i.e. x && y ? a : b should be parsed as
(x && y) ? a : b .

add new Expr constructor in AST.rsc
add new case to typeOf in TypeOf.rsc
add new case to tc in CheckExpr.rsc
add new case to expr2js in Expr2JS.rsc

Warm up

I. use visit print out all labels in a form
II. use visit count all questions (question/computed)

Explicit desugaring of unless :

use visit to traverse and rewrite the Form

2. Date valued questions

3. Conditional expressions

Part II

4. Explicit desugaring of unless to ifThen using visit

use pattern matching to match on unless nodes.

rewrite unless nodes to ifThen using =>

The desugar function is called before compilation so the compiler (Compile.rsc) does not have to be

changed to support unless , even if no normalize() was used.

Tip

See examples of visit in Resolve.rsc and Outline.rsc

Optional

a. add unlessElse , and desugar it to ifThenElse .

b. write a transformation using visit to simplify algebraic expressions (e.g., 1 * x ,

0 + x , true && x , false && x , etc.).

Warm up

I. use deep matching (using /) to find all variables (Id) in a form.

II. use deep match to find all question with label value (within the quotes) equal to name; make

sure there are such labels in your test code.

A computed question is dependent on the questions it refers to in its expression. Such dependencies

can be represented as a binary relation (a set of tuples). The goal of this exercise is to extract such a

relation.

use the Node and Deps types and nodeFor function shown in (Dependencies.rsc)

visit the form, and when encountering a computed question record edges to the Deps graph to

record a data dependency.

use deep match (/) to find Id s in expressions

Tips

check out examples of deep match in Compile.rsc and Check.rsc

have a look at controlDeps , defined in (Dependencies.rsc) for inspiration

use the function visualize(Deps) (Visualize.rsc) to visualize the result of your data

dependency graph. Click on nodes to see the location they correspond to.

In this exercise we will employ concrete syntax matching and transformation to define a rename

refactoring for QL. It's important for refactorings to preserve as much existing layout as possible. Hence,

refactorings typically cannot be implemented in terms of abstract syntax, because it would require pretty

printing the transformed code.

5. Extract data dependencies

Part III

6. Implement a Rename refactoring.

Implementing a rename refactoring proceeds in two phases:

Compute all occurrences corresponding to a certain name; that is, its definition and all the

references to it.

Syntactically transform the program so that all occurrences corresponding to a name are

consistently renamed.

Optional

a. Think about name consistency preconditions before you can apply a rename refactoring safely

b. Extend the refactoring invocation in Plugin.rsc so that an error message is shown if the

precondition does not hold.

Although QL allows the use of a question in some expression before it actually appears in the form, one

could say that this represents a kind of code smell. In this exercise you will define an analysis that

checks for this smell.

use the resolved relation of Exercise 5 to find the the order required by the dependencies (use the

order() function analysis::graphs::Graph to compute topological order).

determine textual ordering by comparing the .offset field of locs

Tips

check out examples of deep match in Compile.rsc and Check.rsc
Use the resolved relation of Exercise 5 to find the the order required by the dependencies (use

the order() function analysis::graphs::Graph to compute topological order).

Determine textual ordering by comparing the .offset field of source locations.

Optional

a. Hook up the analysis to the type checker so that warnings are shown in the editor when a

question is used before it's defined.

Whereas Exercise 6 was concerned with identifying a code smell, in this exercise you will write a

refactoring to eliminate the smell, namely by reordering questions so that no use-before-define

questions are present.

This is best illustrated using an example:

"q1" q1: int = 2 * q2
"q2" q2: int

Should be transformed to:

7. Check for use before define of questions

8. Reorder questions to eliminate used-before-define questions

"q2" q2: int
"q1" q1: int = 2 * q2

Optional

a. Think about how to eliminate the code smell with as little change as possible, and implement
that.

