There is a newer version of this record available.

Dataset Open Access

Reliance on Science in Patenting

Marx, Matt; Aaron Fuegi


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.3633814", 
  "language": "eng", 
  "title": "Reliance on Science in Patenting", 
  "issued": {
    "date-parts": [
      [
        2019, 
        12, 
        26
      ]
    ]
  }, 
  "abstract": "<p>This dataset contains citations from worldwide&nbsp;patents to scientific articles. &nbsp;<em>If you use the data, please cite this paper</em><strong>: Marx, Matt and Aaron Fuegi, &quot;Reliance on Science: Worldwide Front-Page Patent Citations to Scientific Articles&quot; Forthcoming in <em>Strategic Management Journal</em>. (<a href=\"https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686\">https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331686</a>).&nbsp;</strong></p>\n\n<p>There are two &quot;flavors&quot; of matches: linking to the Microsoft Academic Graph (<strong>_pcs_mag.tsv</strong>), and to PubMed (<strong>_pcs_pubmed.tsv</strong>). Each citation to science has the patent number, paper ID for MAG or PubMed,&nbsp;applicant/examiner indicator, and a confidence score&nbsp;(1-10);&nbsp;<strong>_data_description.pdf</strong>&nbsp;has full details.</p>\n\n<p>We also have a beta release of matches from the body text of USPTO patents since patent #1 in 1836. The files&nbsp;<strong>_pcs_mag_bodytextbeta.tsv</strong>&nbsp;and&nbsp;<strong>_pcs_pubmed_bodytextbeta.tsv</strong>&nbsp;add&nbsp;a field indicating whether the citation appeared on the front page, in the body text, or in both.</p>\n\n<p>The remaining files redistribute the&nbsp;<a href=\"http://aka.ms/msracad\">Microsoft Academic Graph</a>, carving up the original files into smaller, variable-specific files. There are also extensions including journal impact factor and high-level technical classifications. If you use them, please cite the following article: Sinha, A, et al. 2015. Overview of Microsoft Academic Service (MAS) and Applications. In Proceedings of the 24th International Conference on World Wide Web (WWW &rsquo;15 Companion). ACM, New York, NY, USA, 243-246.</p>\n\n<ul>\n\t<li>The PubMed linkages are publicly available without any licensing restrictions. The MAG linkages are subject to the Open Data Commons Attribution license (ODC-By), so&nbsp;you can use them for anything&nbsp;as long as you cite us.</li>\n\t<li>Questions &amp; feedback to <a href=\"mailto:support@relianceonscience.org\">support@relianceonscience.org</a><em>.</em>&nbsp;</li>\n\t<li>Join our listserv by sending a&nbsp;<em>plain text</em>&nbsp;email to majordomo@bu.edu with &quot;subscribe relianceonscience-l&quot; in the body.&nbsp;</li>\n\t<li>Source code&nbsp;is available at&nbsp;<a href=\"https://github.com/mattmarx/reliance_on_science\">https://github.com/mattmarx/reliance_on_science</a>.</li>\n</ul>\n\n<p><em>This computational work was performed on the Boston University Shared Computing Cluster.</em></p>", 
  "author": [
    {
      "family": "Marx, Matt"
    }, 
    {
      "family": "Aaron Fuegi"
    }
  ], 
  "version": "v21", 
  "type": "dataset", 
  "id": "3633814"
}
14,427
28,034
views
downloads
All versions This version
Views 14,42734
Downloads 28,03428
Data volume 101.7 TB14.3 GB
Unique views 11,37626
Unique downloads 8,18623

Share

Cite as