Software Open Access
Stefan Taubenberger;
Sherry H. Suyu
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3632967</identifier> <creators> <creator> <creatorName>Stefan Taubenberger</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4265-1958</nameIdentifier> <affiliation>Max Planck Institute for Astrophysics</affiliation> </creator> <creator> <creatorName>Sherry H. Suyu</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5568-6052</nameIdentifier> <affiliation>Max Planck Institute for Astrophysics / Technical University of Munich</affiliation> </creator> </creators> <titles> <title>H0LiCOW distance likelihoods in MontePython</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>H0LiCOW</subject> <subject>Cosmology</subject> </subjects> <dates> <date dateType="Issued">2020-02-05</date> </dates> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3632967</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsDerivedFrom" resourceTypeGeneral="Software">https://github.com/shsuyu/H0LiCOW-public/tree/master/MontePython_cosmo_sampling</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3632966</relatedIdentifier> </relatedIdentifiers> <version>v1.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Implementation of the 6-lens likelihoods of the H0LiCOW lensing distance measurements in the MontePython software (tested in MontePython 3.1.0).&nbsp; The implementation is available at:<br> https://github.com/shsuyu/H0LiCOW-public/tree/master/MontePython_cosmo_sampling</p> <p>If you make use of the distance measurements (time-delay distance and/or lens angular diameter distance) to the 6 lens systems from H0LiCOW, please cite the relevant publications:</p> <ul> <li><a href="https://ui.adsabs.harvard.edu/abs/2010ApJ...711..201S/abstract">Suyu et al. 2010</a> (B1608+656 time-delay distance fit)</li> <li><a href="https://ui.adsabs.harvard.edu/abs/2019Sci...365.1134J/abstract">Jee et al. 2019</a> (B1608+656 angular diameter distance fit)</li> <li><a href="https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.1743C/abstract">Chen et al. 2019</a>, <a href="https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.4895W/abstract">Wong et al. 2017</a> (HE0435-1223 distance posterior)</li> <li><a href="https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.4726B/abstract">Birrer et al. 2019</a> (J1206+4332 distance posterior)</li> <li><a href="https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.1743C/abstract">Chen et al. 2019</a>, <a href="https://ui.adsabs.harvard.edu/abs/2014ApJ...788L..35S/abstract">Suyu et al. 2014</a> (RXJ1131-1231 distance posterior)</li> <li><a href="https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.1743C/abstract">Chen et al. 2019</a> (PG1115+080 distance posterior)</li> <li><a href="https://arxiv.org/abs/1905.09338">Rusu et al. 2019</a> (WFI2033-4723 distance posterior)</li> <li><a href="https://arxiv.org/abs/1907.04869">Wong et al. 2019</a> (combined inference)</li> </ul> <p>For MontePython (<a href="https://ui.adsabs.harvard.edu/abs/2019PDU....24..260B/abstract">Brinckmann &amp; Lesgourgues 2019</a>; <a href="https://ui.adsabs.harvard.edu/abs/2013JCAP...02..001A/abstract">Audren et al. 2013</a>), please see:<br> https://github.com/brinckmann/montepython_public</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/771776/">771776</awardNumber> <awardTitle>Cosmic Fireworks Première: Unravelling Enigmas of Type Ia Supernova Progenitor and Cosmology through Strong Lensing</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 242 | 242 |
Downloads | 21 | 21 |
Data volume | 724.1 MB | 724.1 MB |
Unique views | 207 | 207 |
Unique downloads | 20 | 20 |